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ABSTRACT

The expression levels of thousands to tens of thousands of genes in a living cell are con-

trolled by internal and external cues which act in a combinatorial manner that can be modeled

as a network. High-throughput technologies, such as DNA-microarrays and next generation

sequencing, allow for the measurement of gene expression levels on a whole-genome scale. In

recent years, a wealth of microarray data probing gene expression under various biological

conditions has been accumulated in public repositories, which facilitates uncovering the un-

derlying transcriptional networks (gene networks). Due to the high data dimensionality and

inherent complexity of gene interactions, this task inevitably requires automated computational

approaches.

Various models have been proposed for learning gene networks, with Bayesian networks

(BNs) showing promise for the task. However, BN structure learning is an NP-hard problem

and both exact and heuristic methods are computationally intensive with limited ability to

produce large networks. To address these issues, we developed a set of parallel algorithms.

First, we present a communication efficient parallel algorithm for exact BN structure learning,

which is work-optimal provided that 2n > p · log p, where n is the total number of variables,

and p is the number of processors. This algorithm has space complexity within 1.41 of the

optimal. Our empirical results demonstrate near perfect scaling on up to 2, 048 processors.

We further extend this work to the case of bounded node in-degree, where a limit d on the
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number of parents per variable is imposed. We characterize the algorithm’s run-time behavior

as a function of d, establishing the range
[
1
3n− logmn, dn2 e

)
of values for d where it affects

performance. Consequently, two plateaus regions are identified: for d < 1
3n − logmn, where

the run-time complexity remains the same as for d = 1, and for d ≥ dn2 e, where the run-time

complexity remains the same as for d = n−1. Finally, we present a parallel heuristic approach

for large-scale BN learning. This approach aims to combine the precision of exact learning with

the scalability of heuristic methods. Our empirical results demonstrate good scaling on various

high performance platforms. The quality of the learned networks for both exact and heuristic

methods are evaluated using synthetically generated expression data. The biological relevance

of the networks learned by the exact algorithm is assessed by applying it to the carotenoid

biosynthesis pathway in Arabidopsis thaliana.
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CHAPTER 1. Introduction

1.1 Background and Motivation

1.1.1 Gene Regulatory Networks

The expression levels of thousands to tens of thousands of genes in a living cell are controlled

by internal and external cues which act in a combinatorial manner (with multiple regulatory

inputs) in the form of a network. In response to signals, transcription factor proteins (TFs)

adjust the transcription rates of target genes which they regulate to ensure that the appropriate

amounts of RNA are transcribed and that the necessary proteins are produced by the cell at

all times. In many cases TFs’ activity levels can be closely approximated by their expression

levels. In the cases when TFs’ activity levels are determined by other biochemical events,

they can often be derived from the expression levels of indirect regulators, e.g. signaling

proteins, which in turn control TFs’ activity [Pe’er et al., 2001, Segal et al., 2003]. Therefore,

when gene expression levels are modeled as random variables, it is expected that interactions

between regulators and target genes result in statistical dependencies [Pe’er et al., 2006]. While

transcription regulation is a much more complex process involving various epigenetic processes

(methylation, acetylation, histone modification, etc.), in this work we term gene network the

schematic representation of gene interactions as defined by their relative expression levels

changes. In reality, genes do not directly interact with other genes. Instead, gene expression
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Gene 1

Gene 2

Gene 4

Gene 3

Protein 1

Protein 2
Protein 3

Protein 4

Complex 3-4

Metabolite 1

Metabolite 2

Direct
Indirect

Activation
Inhibition

Metabolites

Proteins

Genes

Epigenetic
Effect

Figure 1.1 Schematic representation of a gene regulatory network. Solid
arrows indicate direct interactions. The dashed lines indicate
indirect associations between genes that result from project-
ing the interactions between elements from the three different
spaces onto the gene space. Arrows represent activation and
bars represent inhibition. (Drawn after Volkhard Helms, Prin-
ciples of Computational Cell Biology, 2008.)

levels are regulated by the actions of gene products, proteins and metabolites (see Figure 1.1).

What is observed in terms of gene expression changes are rather the indirect interactions, which

could be visualized as the projection of gene interactions with proteins and metabolites onto

the gene space. Gene networks are commonly represented as directed or undirected graphs,

where nodes represent genes and edges - interactions (see level A of Figure 1.1).

High-throughput technologies, such as DNA-microarrays and Next Generation Sequencing

Technologies, allow for the measurement of gene expression levels on a whole-genome scale [Ko-

toulas and Siebes, 1999, Schena et al., 1995]. In the recent years a wealth of microarray

expression data has been accumulated in public repositories, such as, NASCArrays [Craigon

et al., 2004] and ArrayExpress [Brazma et al., 2003], resulting from both small- and large-
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scale studies, probing gene expression under various biological conditions. Uncovering the

underlying gene networks from observed microarray gene expression data (also referred to as

reverse engineering gene networks) is an important and difficult problem. Due to the high

data dimensionality and inherent complexity of gene interactions, this task inevitably requires

automated computational approaches. Various models have been proposed for reverse en-

gineering gene networks including correlation-based methods [Rice et al., 2005], information

theory-based methods [Basso et al., 2005], dynamical models [Fuente et al., 2002], as well as,

Bayesian networks [Friedman, 2004]. In their community-wide effort for assessing the quality

of computational techniques for network reconstruction, Marbach et al. concluded that this

problem remains open and very challenging [Marbach et al., 2010]. Their findings reveal that

more than 1/3rd of the methods perform as good as random guessing, and that the majority

of current inference methods fail to correctly predict multiple regulatory inputs (combinatorial

regulation).

1.1.2 Bayesian Networks as a Model for Gene Regulatory Networks

Bayesian networks (BNs) are graphical models which represent probabilistic relationships

between interacting variables in a given domain. In BNs, relationships between variables

are depicted in the manner of conditional independencies (presence or absence of edges) and

quantitatively assessed by conditional probability distributions [Grzegorczyk and Husmeier,

2008]. BNs provide a holistic view of the interactions within the domain and can be learned

from data. BNs have been successfully applied in a variety of different research areas, including

decision support systems, language processing, medicine, and bioinformatics [Basilio et al.,

2000, Friedman, 2004, Heckerman et al., 1995b]. Certain properties make them especially

attractive for gene network induction. One of them is the ability to depict combinatorial
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interactions, highlighted as one of the most challenging tasks by [Marbach et al., 2010]. In the

search for a globally optimal BN, all possible subsets of variables are evaluated as potential

regulators for each gene, in the context of a complete structure, unlike co-expression networks,

where individual pair-wise or partial correlations are considered. Another one, is the ability to

learn causal edges in presence of perturbation data, which in the context of a biological system

can be achieved for example via a gene knockout or over-expression of a given gene [Pe’er et al.,

2001]. Further, the scoring functions used in BN structure learning approaches are robust to

overfitting. Most scoring functions for BN structure learning employ a penalty term to balance

the goodness of fit with the complexity of the given model. Examples of such scoring functions

are the information theoretic Bayesian Information Criterion (BIC) [Schwarz, 1978] and Akaike

Information Criterion (AIC) [Akaike, 1974], the information theoretic scoring function based

on the Minimum Description Length principle (MDL) [Lam and Bacchus, 1994], and Bayesian

scores, which estimate the posterior probability of the considered model given the data, such

as Bayesian Dirichlet (BD) [Cooper and Herskovits, 1992]) and its extension Bayesian Dirichlet

equivalence (BDe) [Heckerman et al., 1995a]. Major difficulties in inferring BNs from data are

due to its computational and space complexity. In the following subsections we outline the

state-of-the-art approaches and the remaining open problems for both exact and heuristic BN

structure learning.

1.1.3 Exact Bayesian Network Structure Learning

In order to learn an optimal BN from data, every possible network configuration over

the variables in the given domain is scored, given the observed data. The search space of BN

structure learning for n variables corresponds to the space of all possible directed acyclic graphs

(DAGs) on the n variables, which is shown to be super-exponential in n [Robinson, 1973]. In
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an effort to reduce the search space, marginalization over node orderings was proposed, which

successfully reduces the search space to exponential [Koivisto, 2006, Koivisto et al., 2004,

Ott et al., Silander and Myllymaki, 2006]. Adopting a canonical representation of the DAGs

in conjunction with a decomposable scoring function (where the score of the network can

be computed as a sum of score contributions of each variable and its parents) allows for a

dynamic programming (DP) approach, described in detail in Chapter 2. However, even with

these improvements, and after further limiting the number of possible regulators for each gene,

the BN structure learning problem is shown to be NP-hard [Chickering et al., 1994].

State-of-the-art sequential algorithms exploit the improvements described above [Ott et al.,

Silander and Myllymaki, 2006] but are still unable to scale to domains of even 30 variables.

The reason for this is not only in the run time, but also in the memory requirements, which

grow exponentially in n as well. In addition, with the large amounts of publicly available

microarray data, large samples (thousands of microarray chips) can be compiled after appro-

priate statistical pre-processing as shown in Aluru et al. [Aluru et al., Under Review], and used

for network induction. Computational complexity of the utilized scoring functions increases

linearly in the number of observations (as the data matrix is scanned), which introduces addi-

tional computational cost. Thus, both the computational and memory requirements create a

bottleneck for BN structure learning, leaving the problem of computing optimal BNs for both

large number of variables and large number of observations open. Even-though heuristic-based

algorithms for BN structure learning exist, they trade off optimality for the ability to learn

larger networks, and structure learning without additional assumptions remains valuable. Ott

et al. report that inferring a BN for 20 variables under 173 conditions took approximately 50

hours.
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1.1.4 Heuristic Bayesian Network Structure Learning

Due to the exponential complexity of exact learning, exact approaches do not scale to large

networks, prompting the development of heuristic approaches [Chen et al., 2006, Cheng, 2002,

Chickering, 2002, Friedman et al., Heckerman et al., 1995a, Moore and Wong, 2003, Pe’er et al.,

2006, Spirtes et al., 2001, Spirtes and Meek, 1995, Tsamardinos et al., 2006, Wang et al., 2007].

In principle the heuristic approaches can be categorized as either i) score optimization methods,

ii) constraint-based methods, or iii) hybrid approaches, which include elements of the first two.

A commonly used approach from the first category is a greedy search. It starts with an empty

network (all variables are independent), a fully-connected network, or a random network, and

proceed to score every possible change, which can be implemented by adding an edge, removing

an edge, or reversing an edge of this structure, utilizing a Bayesian scoring criteria. The newly

generated structure which results from making the highest-scoring change is accepted and

the algorithm repeats this step in a greedy search manner until a structure is selected which

optimizes the score [Chickering, 2002, Heckerman et al., 1995a, Moore and Wong, 2003]. In the

second category, direct and entailed conditional independencies are learned from the observed

data using statistical or information theoretic measures and a graphical criterion called d-

separation. A partially oriented network is returned which satisfies these constraints [Elidan

and Friedman, 2005, Spirtes et al., 2001]. These methods are shown to do better in discovering

the sets of parents and children of each variable (undirected network), than identifying the

parents of each node (the final DAG). Methods in the third category utilize constraint-based

approaches to learn the sets of parents and children for each variable, and then proceed with

heuristic score-optimization to learn the final network [Chen et al., 2006, Spirtes and Meek,

1995, Tsamardinos et al., 2006, Wang et al., 2007]. A more in depth literature review is given
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in Chapter 4. An extensive evaluation of the performance of the state-of-the-art algorithms,

including the Sparse Candidate [Friedman et al.], Three Phase Dependency Analysis [Cheng,

2002], Optimal Reinsertion [Moore and Wong, 2003], Greedy Equivalence Search [Chickering,

2002], PC [Spirtes et al., 2001], and Max-Min Hill Climbing (MMHC) [Tsamardinos et al.,

2006] algorithms, shows that the MMHC performs best in terms of both correctness of the

inferred BNs and and ability to infer large networks [Tsamardinos et al., 2006]. Tsamardinos

et al. report that building a BN for 5, 000 variables took approximately 14 days, of which 19

hours were spent to infer the skeleton network and the rest 13 days to orient it. This indicates

that the state-of-the-art heuristic-based methods for BN structure learning do not scale to

large genome domain sizes, leaving this as an open problem.

In this thesis we address the open problems outlined above by devising and implementing

run-time and memory efficient parallel algorithms. We also investigate the biological relevance

of the learned networks from large mixtures of microarray experiments.

1.2 Concepts of Bayesian Networks and Structure Learning

1.2.1 Markov Assumption and Bayesian Networks

Throughout this thesis, we denote random variables with upper-case letters (e.g. X, Xi)

and their values with lower-case letters (e.g. x). We denote sets of random variables with

upper-case bold-face letters (e.g. Z) and the corresponding assignment of values for each

variable in a given set with a lower-case bold-face letter (e.g. z). Conditional independence

of two variables X and Y given set Z is specified as ⊥⊥ (e.g. X ⊥⊥ Y |Z), and conditional

dependence as 6⊥⊥ (e.g. X 6⊥⊥ Y |Z). Let X = {X1, X2, . . . , Xn} be a set of random variables. In

a directed acyclic graph (DAG) on X , a node Xj is called a descendant of Xi if a directed path
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exists from Xi to Xj , and a nondescendent otherwise. Further, a node Xk is called a parent of

Xi, and Xi is called a child of Xk, if there is an edge from Xk to Xi. The set of all parents of

Xi is denoted by Pa (Xi). The following is known as the Markov assumption:

Definition 1.1 Let P be a joint probability distribution over the variables in set X and N =

(X , E) be a DAG. Then N and P are said to satisfy the Markov assumption if each variable

Xi ∈ X is conditionally independent of the set of its nondescendants, given the set of its

parents [Neapolitan, 2003].

The pair (N,P ) is called a BN if N and P satisfy the Markov assumption [Pearl, 1988].

This allows for a compact representation of the joint probability over X , as the product of the

conditional probabilities of each variable given its parents:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi | Pa (Xi)) .

Formally:

Theorem 1.1 If (N,P ) satisfies the Markov assumption, then P is equal to the product of its

conditional distributions of all nodes given values of their parents, whenever these conditional

distributions exist [Neapolitan, 2003].

1.2.2 Optimal Structure Learning

When learning the structure of a BN from data, the Bayesian approach utilizes a statisti-

cally motivated scoring function to evaluate how well a given graph depicts the dependencies

in the given data [Cooper and Herskovits, 1992, Heckerman et al., 1995a, Schwarz, 1978, Lam

and Bacchus, 1994, Akaike, 1974]. One example of such a scoring function is the Bayesian
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score, where the posterior probability of the proposed graph N is evaluated given the observed

data. Suppose we are given m observations of the system, each observation consisting of the

value of each of the n random variables in X . These observations can be viewed as an n×m

matrix Dn×m, with rows representing variables and columns representing observations. Then,

the Bayesian score for a network N given Dn×m is:

Score (N) = logP (N | D)

= logP (D | N) + logP (N) + C,

where C is a constant. In this score the two non-constant terms logP (D | N) and logP (N)

refer respectively to the log-likelihood of the data D given DAG N and the prior probability

of N , usually taken to be uniform.

Optimal structure learning is formalized as an optimization problem. Let Score(N : Dn×m)

be a scoring function which evaluates how well a given DAG N predicts the dependencies in

Dn×m. Finding an optimal BN structure Nopt is equivalent to finding a DAG which optimizes

the scoring function:

Nopt = argmax
N

Score (N : Dn×m) .

1.2.3 Scoring Functions

To find the optimal network efficiently, it is crucial to choose a scoring function which

decomposes into individual score contributions s (Xi, Pa (Xi)) of each of the variables in X

given its parents:

Score (N) =
∑
Xi∈X

s (Xi, Pa (Xi)) .
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Examples of such information theoretic and Bayesian scoring functions include the Bayesian

Information Criterion (BIC) [Schwarz, 1978] and Akaike Information Criterion (AIC) [Akaike,

1974], the information theoretic scoring function based on the Minimum Description Length

principle (MDL) [Lam and Bacchus, 1994], and Bayesian scores, which estimate the posterior

probability of the considered model given the data, such as Bayesian Dirichlet (BD) [Cooper

and Herskovits, 1992]) and its extension Bayesian Dirichlet equivalence (BDe) [Heckerman

et al., 1995a]. In this work we utilize two of them, namely the MDL and BDe scoring functions,

which are described in more detailed below.

Minimum Description length principle-based scoring function

This function is based on the minimum description length principle, which states that for

given data one should choose such a model to encode the data, which minimizes the description

length of both the model itself and the data [Cover and Thomas, 2006]. In the case of Bayesian

networks the model is a network (i.e. DAG with corresponding conditional probabilities table).

Its description length is decomposed into the sum of description lengths of the component

nodes. Because the network describes probability distribution with respect to the input data,

it can be used to find optimal encoding of this data, which induces its description length.

Specifically, to describe the graph N , the parents sets of each variable need to be described.

This can be achieved by storing the number of parents |Pa(Xi)| and an index of the parent

set Pa(Xi) in an agreed upon enumeration of all
(

n
|Pa(Xi)|

)
sets of cardinality |Pa(Xi)|. Thus,

the description length of the graph N is

n∑
i=1

(
log n+ log

(
n

|Pa(Xi)|

))
.

Further, to describe the conditional probability distributions the set of all conditional proba-
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bility tables (CPT) needs to be saved. Suppose that for variable Xi, ri denotes the number of

discrete states and qi denotes the number of all possible parent configurations. Then qi ·(ri − 1)

parameters describe the CPT for variable Xi, and given that 1
2 ·m bits are used to represent

each parameter, the set of all CPTs can be encoded in:

n∑
i=1

1

2
· qi(ri − 1) logm

bits. Finally, the data can be described using conditional entropy H (Xi|Pa (Xi)), the descrip-

tion length of which is given by:

n∑
i=1

m ·H (Xi|Pa (Xi)) .

1.2.3.1 Bayesian Dirichlet Equivalence scoring function

The Bayesian Dirichlet Equivalence (BDe) scoring function evaluates the posterior prob-

ability of a graph N given the observed data Dn×m. The best network is the one which

maximizes the posterior probability, as opposed to the MDL score, where the optimal network

has minimum description length.

Let ri denote the number of discrete states of variable Xi, and qi be the number of possible

configurations of its parent set Pa(Xi) in N . Let wj for j = 1, . . . qi be one of these configu-

ration. Let also Nijk be the number of instances in the data set Dn×m where the variable Xi

is in state k with parents in configuration j. Thus, Nij is the number of instances where the

parents of variable Xi are in configuration j. The BDe score is given by:
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ScoreBDe(N : DN×m) = log(p (N))+

n∑
i=1

qi∑
j=1

log

(
Γ (ηij)

Γ(Nij + ηij)

)
+

ri∑
k=1

log

(
Γ (Nijk + ηijk)

Γ (ηijk)

)
,

where ηijk are the hyperparameter for the Dirichlet prior distribution of the parameters given

the network structure N , and nij =
∑ri

k=1 ηijk. The Gamma function Γ(c) =
∫∞
0 e−u.uc−1 du

is given by Γ(c) = (c−1)! when c is an integer. The hyperparameters are computed as follows:

ηijk = η × p(xik, wik|G0),

where p(.|G0) represents a probability distribution associated with a prior Bayesian network G0

and η is a parameter representing the equivalent sample size. In our implementation of the BDe

score we use the variation BDeu, where a uniform probability is assigned to each configuration

of variable state and parent set configuration: p(xik, wik|G0) = 1
riqi

. We also assign uniform

distribution to all possible structures, and therefore ignore the log(p (N)) term. The BDe

assigns equal scores to graphs from the same Markov equivalence class (see Section 1.2.8).

1.2.4 Faithfulness

Variables X and Y are said to be conditionally independent given set Z with respect to

a probability distribution P if P (X,Y |Z) = P (X|Z)P (Y |Z). The following condition is an

essential assumption we will be making throughout this thesis:

Definition 1.2 A Bayesian network (N,P ) is said to satisfy the faithfulness condition if P

embodies all and only independencies that are reflected in the DAG N [Spirtes et al., 2001].
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1.2.5 D-separation

While N encodes some independencies of P directly (e.g. the absence of an edges indicates

lack of direct dependence), others are entailed. A graphical criterion which allows for entailed

independencies to be read from the BN structure N is called d-separation.

Definition 1.3 Let X,Y and Z be three mutually exclusive subsets of X . Then d-sep(X,Y|Z)

denotes that X and Y in N are d-separated by Z, and d-sep(X,Y|Z) is said to hold [Neapolitan,

2003] when on every undirected path between a node in X and a node in Y, a node Z exists

such that either:

1. Z does not have two incoming edges and Z ∈ Z, or

2. Z does have two incoming edges but neither Z nor any of its descendants in N are in Z.

In a faithful Bayesian network (N,P ) , d-sep(X,Y|Z) is equivalent to X ⊥⊥ Y|Z [Pearl,

1988]. Due to the faithfulness assumption we made in 1.2.4, d-separation and independence

are used interchangeably.

1.2.6 Constraints-based Learning

In BN structure learning statistical tests or information theoretic criteria are often used

to discover conditional independencies. The main idea behind constraint-based BN structure

learning consists of determining direct and entailed conditional independencies via statistical

tests and d-separation relations. The following theorem [Spirtes et al., 2001] is instrumental

to the edge discovery procedures in the algorithms discussed in Chapter 4:

Theorem 1.2 If a probability distribution P is faithful to a DAG N then:
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1. For each pair of nodes X and Y in X , X and Y are adjacent in N if and only if X 6⊥⊥ Y |Z

for all Z ⊆ X\{X,Y }, and

2. For each triplet of nodes X,Y , and Z in N such that X and Z are adjacent, Y and Z

are adjacent, but X and Y are not adjacent, X → Z ← Y is a subgraph of N if and only

if X 6⊥⊥ Y |Z for all Z such that X,Y /∈ Z and Z ∈ Z.

Let PC(T ) denote the set of parents and children in N of some variable T ∈ X . The set is

unique for all BNs that are faithful to the same probability distribution P [Verma and Pearl,

1988, 1991].

1.2.7 Markov Boundary

For any variable T ∈ X , its Markov boundary, denoted MB(T ), is defined as any minimal

subset of X which shields T from all other variables in X excluding T and MB(T ):

Definition 1.4 Markov boundary MB(T ) of a variable T ∈ X is the minimal set of variables

in X such that T ⊥⊥ (X\ (MB (T ) ∪ {T})) |MB(T ).

For any variable T ∈ X the set MB(T ) is the union of the parents of T , children of T , and all

other parents of children of T (also called spouses of T ). The set MB(T ) is unique for all BNs

that are faithful to the same probability distribution P [Pearl, 1988].

1.2.8 Markov Equivalence

Multiple DAGs can represent the same set of conditional independecies, i.e. they have the

same d-separations. Such graphs are called Markov equivalent and are formally defined as

follows:
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Definition 1.5 Let N1 = (X , E1) and N2 = (X , E2) be two DAGs containing the same set

of nodes X . Then N1 and N2 are called Markov equivalent is for every three mutually

disjoint subsets A,B,C ⊆ X , A and B are d-separated by C in N1 if and only if A and B are

d-separated by C in N2 [Neapolitan, 2003].

The application of the above definition over graph properties is in probability due to the

following theorem:

Theorem 1.3 Two DAGs are Markov equivalent if and only if, based on the Markov assump-

tion, they entail the same conditional independencies [Neapolitan, 2003].

Since Markov equivalent graphs represent the same set of independencies, when using

Bayesian scoring functions, we will desire that the same score is assigned to all DAGs within the

same Markov equivalence class. One such Bayesian score is the Bayesian Dirichlet equivalence

(BDe) score.
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CHAPTER 2. Parallel Globally Optimal Structure Learning of Bayesian

Networks

2.0.9 Previous Work

A major difficulty in BN structure learning is the super exponential search space in the

number of random variables. As reported by Robinson [Robinson, 1973], for a set of n variables

there exist n!2
n
2 (n−1)

r·zn possible DAGs, where r ≈ 0.57436 and z ≈ 1.4881. To reduce the search

space, marginalization over node orders has been proposed [Koivisto et al., 2004, Ott et al.,

Silander and Myllymaki, 2006]. Here we briefly review the main idea.

Consider the graph N = (X , E) of a BN (N,P ). Due to its DAG structure, the random

variables in X can be ordered in such a way that for each variable Xi ∈ X its parents Pa (Xi)

precede it in the specified ordering. Optimizing a scoring function for each variable Xi ∈ X

and all of its respective subsets of preceding elements allows us to discover the optimal network

that respects the particular ordering. Further, to investigate all possible graphs we need to

consider a total of n! orderings of X . This yields the search space of ordered subsets of X of

size n!2n (see Figure 2.1). However, as long as Pa (Xi) precedes Xi, the order among the

nodes in Pa(Xi) is irrelevant. Thus, the search space can be reduced to the 2n unordered

subsets of X .

Even reduced, the search space remains exponential and in practice, exact structure learn-

ing without additional constraints has been achieved only for moderate size domains and at
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Figure 2.1 A permutation tree and its corresponding subset lattice.

high execution cost. While exact network structure learning, or globally optimal structure

learning, has been shown to be NP-hard even with bounded node in-degree [Chickering et al.,

1994], constructing exact Bayesian networks without additional assumptions remains valuable

nevertheless.

2.0.10 Contributions

In this chapter, we present a parallel algorithm for exact Bayesian network structure learn-

ing with optimal parallel efficiency on up to O
(
1
n · 2

n
)

processors regardless of the complexity

of the scoring function used. To assess the performance of our algorithms experimentally,

we report results on two parallel systems – IBM Blue Gene/P and AMD Opteron cluster

with InfiniBand interconnect. Experimental results demonstrate the validity of the theoretical

predictions. To our knowledge, the presented work is the first parallel algorithm for exact

learning.

The remainder of this chapter is organized as follows: In Section 2.1, we provide a brief

overview of the Ott et al. sequential method for exact Bayesian network structure learning,

upon which our parallel algorithm is based. Sections 2.2 and 2.3 contain our parallel algorithm,

and proofs of correctness and run-time and space complexity analysis, respectively. In Sec-
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tion 2.4 we present scaling experiments on an IBM Blue Gene/P system and an AMD Opteron

InfiniBand cluster by applying our algorithm to the problem of identifying gene regulatory

networks, a problem that arises in systems biology.

2.1 Exact Structure Learning of Bayesian Networks

Given a set of observations Dn×m and a decomposable scoring function, the Bayesian net-

work structure learning problem is to find a DAG N on the n random variables that optimizes

Score (N). Learning the DAG is equivalent to finding the parents of each node in the domain

under the acyclicity constraint.

While an exhaustive enumeration of all possible structures is prohibitive in space and time,

the notion of ordering the variables (nodes) has been shown to be advantageous [Friedman

and Koller, 2003]. Adopting a canonical representation of the DAGs in conjunction with a

decomposable scoring function permits a dynamic programming approach, greatly reducing

the search space. Exact structure learning algorithms exploit this [Ott et al., Silander and

Myllymaki, 2006]. Our parallel algorithm is based on the sequential method of Ott et al. [Ott

et al.], which we briefly describe here.

Let Xi ∈ X and A ⊆ X − {Xi}. Using Dn×m, a scoring function s(Xi, A) determines the

score of choosing A to be the set of parents for Xi; or equivalently, s(Xi, A) specifies how well

A predicts Xi given Dn×m. For the moment, we do not go into details of how s is computed,

except to note that the cumulative s function computations could be the dominant factor in

run-time complexity.

Definition 2.1 Let Xi ∈ X and A ⊆ X −{Xi}. Let F (Xi, A) denote the highest possible score



www.manaraa.com

19

that can be obtained by choosing parents of Xi from A; i.e.,

F (Xi, A) = max
B⊆A

s(Xi, B).

A set B which maximizes the above equation is an optimal parents set for Xi from the

candidate parents set A. While F (Xi, A) can be computed by directly evaluating all 2|A|

subsets of A, it is advantageous to compute it based on the following recursive formulation.

For any non-empty set A,

F (Xi, A) = max


s (Xi, A)

max
Xj∈A

F (Xi, A− {Xj}) .

An ordering of a set A ⊆ X is a permutation π(A) of the elements in A. A network on A

is said to be consistent with a given ordering π(A) if and only if ∀Xj ∈ A, the parents Pa (Xj)

precede Xj in π.

Definition 2.2 An optimal ordering π∗ (A) is an ordering with which an optimal network on

A is consistent.

Let Xj be the last element in π∗ (A). Then, the permutation π (A− {Xj}) obtained by

leaving out the last element Xj is consistent with an optimal network on A− {Xj}. We write

this as:

π∗ (A) = π∗ (A− {Xj})Xj .

Definition 2.3 Given A ⊆ X and an ordering π(A), let Q (A, π(A)) denote the optimal score
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of a network on A, which is consistent with π(A):

Q (A, π(A)) =
∑
Xj∈A

F (Xj , {Xq | Xq precedes Xj in π (A)}) .

Optimal score of a network on A ⊆ X is then given by Q∗(A) = Q (A, π∗ (A)). Our goal is to

find π∗(X ) and the optimal network score Q∗(X ), and learn the corresponding DAG.

Like the F function, functions π∗ and Q can be computed using a recursive formulation.

Consider a subset A. To find π∗(A), we consider all possible choices for its last element:

X∗j = argmax
Xj∈A

Q (A, π∗(A− {Xj})Xj)

= argmax
Xj∈A

(F (Xj , A− {Xj}) +Q∗ (A− {Xj})) .

Then,

Q∗ (A) = F
(
X∗j , A−

{
X∗j
})

+Q∗
(
A−

{
X∗j
})
,

π∗ (A) = π∗
(
A−X∗j

)
X∗j .

By keeping track of the optimal parents sets for each of the variables in X , an optimal

network is easily reconstructed.

Using these recursive formulations, a dynamic programming algorithm to compute a glob-

ally optimal BN structure can be derived. The algorithm considers all subsets of X in increas-

ing size order, starting from the empty subset. When considering A, the goal is to compute

F (Xi, A) for each Xi /∈ A and Q (A, π∗(A− {Xj})Xj) for each Xj ∈ A. All the F and Q∗

values required for computing these have already been computed when considering subsets

A− {Xj} for each Xj ∈ A.
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Figure 2.2 A lattice for a domain of size 3 and its partitioning into 4 levels,
where the empty set is at level 0. The binary string labels on
the right-hand side of each node show the correspondence with
a 3-dimensional hypercube.

For a subset A, the F function computations (not including the s function computations

required within) take O((n− |A|) · |A|) time and the Q computations take O(|A|) time. The

time taken by s function computations depends upon the particular scoring function used.

Ignoring them for the moment, the rest of the computations take

O
(
Σn
i=0(n− i+ 1) · i ·

(
n
i

))
= O(n2 · 2n) time.

2.2 Parallel Algorithm for Exact Structure Learning

To develop the parallel algorithm, it is helpful to visualize the dynamic programming

algorithm as operating on the lattice L formed by the partial order “set inclusion” on the

power set of X . Koivisto et al. [Koivisto et al., 2004] proved that the permutation tree over all

possible orders collapses to the lattice. The lattice L is a directed graph (V,E), where V = 2X

and (B,A) ∈ E if B ⊂ A and |A| = |B| + 1. The lattice is naturally partitioned into levels,

where level l ∈ [0, n] contains all subsets of size l (see Figure 2.2). A parallel algorithm can
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be derived by mapping the nodes to processors and having edges represent communication if

the incident nodes are assigned to different processors. A node A at level l has l incoming

edges from nodes A− {Xj} for each Xj ∈ A, and n− l outgoing edges to nodes A ∪ {Xi} for

each Xi /∈ A. Functions Q∗(A), π∗(A), and a total of (n− l) F functions are computed at node

A. All of these values need to be sent along each of the outgoing edges. On an outgoing edge

to node A ∪ {Xi}, the F (Xi, A) value is used in computing Q∗(A ∪ {Xi}), and the remaining

F (Xk, A) (Xk /∈ A and Xk 6= Xi) values are used in computing F (Xk, A∪{Xi}) values at node

A ∪ {Xi}. Note that each of the (n − l) F values at A are used in computing the Q∗ value

at one of the n − l nodes connected to A by outgoing edges. Each level in the lattice can be

computed concurrently, with data flowing from one level to the next.

2.2.1 Mapping to an n-dimensional Hypercube

Observe that the undirected version of L is equivalent to an n-dimensional (n-D) hypercube.

Let (X1, X2, . . . , Xn) be an arbitrary ordering of the variables in the domain. A subset A can

be represented by an n-bit string ω, where ω[j] = 1 if Xj ∈ A, and ω[j] = 0 otherwise. As

lattice edges connect pairs of nodes that differ in the presence of one element, they naturally

correspond to hypercube edges (see Figure 2.2). This suggests an obvious parallelization on

an n-D hypercube. While we expect the number of processors p � 2n, we describe this

parallelization in slightly greater detail due to its use as a module in the development of our

parallel algorithm.

The n-D hypercube algorithm runs in n + 1 steps. Let ω denote the id of a processor

and let µ(ω) denote the number of 1’s in ω. Each processor is active in only one time step –

processor ω is active in time step µ(ω). It receives (n− µ(ω) + 1) F values and one Q∗ value

and its respective π∗ from each of its µ(ω) neighbors obtained by inverting one of its 1 bits
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to zero. It then computes its own F and Q∗ values, and π∗, and sends them to each of its

n− µ(ω) neighbors obtained by inverting one of its zero bits to 1.

The run-time of step i is O((n−i+1)·i), in addition to the cost of computing the s function

on a set of size i, which depends on the application and type of scoring function used. Ignoring

the latter, the parallel run-time is O (
∑n

i=0(n− i+ 1) · i) = O(n3), using 2n processors. As

the sequential run-time is O(n2 · 2n), the parallel efficiency is Θ(1/n).

2.2.2 Partitioning into k-dimensional Hypercubes

Let p = 2k be the number of processors, where k < n. We assume that the processors can

communicate as in a hypercube. This is true of parallel computers connected as a hypercube,

hypercubic networks such as the butterfly, multistage interconnection networks such as the

Omega, and point-to-point communication models such as the permutation network model or

the MPI programming model. Our strategy is to decompose the n-D hypercube into 2n−k k-D

hypercubes and map each k-D hypercube to the p = 2k processors as described previously.

Although the efficiency of such a mapping by itself is suboptimal (Θ(1/k)), note that each

processor is active in only one time step and p � 2n. Therefore, we pipeline the execution

of the k-D hypercubes to complete the parallel execution in 2n−k + k time steps such that

all processors are active except for the first k and last k time steps during the build up and

draining of the pipeline.

For convenience of presentation, we use the lattice L and the n-D hypercube interchange-

ably and use A to denote the lattice node for subset A, and use ωA to denote the n-bit binary

string denoting the corresponding hypercube node. We number the positions of the n-bit bi-

nary string using integers 1 through n, with 1 denoting the leftmost position, and n denoting

the rightmost position. Let ωA[i, j] denote the substring of ωA between and including positions
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i and j. We partition the n-D hypercube into 2n−k k-D hypercubes based on the first n − k

bits of node ids. For a lattice node ωA, ωA[1, n − k] specifies the k-D hypercube it is part of

and ωA[n− k+ 1, n] specifies the processor it is assigned to. Conversely, a processor with id r

computes for all lattice nodes A such that r = ωA[n− k + 1, n].

2.2.3 Pipelining Hypercubes

Each k-D hypercube is specified by an (n− k) bit string, which is the common prefix to the

2k lattice/k-D hypercube nodes that are part of this k-D sub-hypercube. The k-D hypercubes

are processed in the increasing order of the number of 1’s in their bit string specifications, and

in lexicographic order within the group of hypercubes with the same number of 1’s. Formally,

we have the following:

Definition 2.4 Let Hi and Hj be two k-D hypercubes and let A and B be two nodes in

the lattice that map to Hi and Hj, respectively. Then, computation of Hi is initiated before

computation of Hj if and only if:

1. µ (ωA [1, n− k]) < µ (ωB [1, n− k]), or

2. µ (ωA [1, n− k]) = µ (ωB [1, n− k]) and ωA [1, n− k] is lexicographically smaller than

ωB [1, n− k].

The above total order is used to initiate the 2n−k k-D hypercube evaluations, starting from

time step 0. If T denotes the time step in which Hi is initiated and A is a lattice node mapped

to Hi, then processor with id ωA[n − k + 1, n] computes for the lattice node A in time step

T + µ(ωA[n− k + 1, n]).
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2.3 Correctness and Complexity

2.3.1 Proof of Correctness

We now prove that when a lattice node is computed, nodes incident to incoming edges have

already been computed in previous steps.

Lemma 2.1 Let (B,A) denote a directed lattice edge. Then, node B is computed at an earlier

time step than when node A is computed, and is either 1) local to A’s processor, or 2) resides

on a different processor but was mapped to the same k-dimensional hypercube as A.

Proof 1 (B,A) is a directed lattice edge, and hence B ⊂ A and |A| = |B| + 1. Therefore,

ωA and ωB differ in one bit position, in which ωB has ‘0’ and ωA has ‘1’. It follows that

µ(ωA) = µ(ωB) + 1. Let c be the position of the differing bit.

Case 1: 1 ≤ c ≤ n− k

In this case, ωA [n− k + 1, n] = ωB [n− k + 1, n]. Thus, lattice nodes B and A are mapped

to the same processor. As µ (ωB [1, n− k]) < µ (ωA [1, n− k]), B is previously computed on the

same processor and is available, without requiring any communication, for computing A.

Case 2: n− k + 1 ≤ c ≤ n

In this case, ωA [1, n− k] = ωB [1, n− k], meaning both A and B are mapped to the same

k-D hypercube. Let T be the time step at which computation on this hypercube is initiated.
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Then, A is computed in time step T +µ (ωA [n− k + 1, n]) = T +µ (ωB [n− k + 1, n]) + 1, one

time step after B is computed.

This proves that the algorithm correctly computes all of the lattice nodes, and hence derives

the optimal Bayesian network.

2.3.2 Run-Time Complexity

The parallel algorithm initiates 2n−k k-D hypercubes, one per each time step starting

from 0. Each k-D hypercube takes k + 1 time steps but successive hypercube evaluations are

pipelined. Thus, the total number of parallel time steps is given by 2n−k + k. Ignoring the

application-specific scoring function s, the computation of the F functions, Q∗, and the last

element of π∗ for a lattice node at level l takes O(l · (n− l+ 1)), which is clearly O(n2). Even

with this relaxed analysis, the parallel run-time is O
(
(2n−k + k) · n2

)
. Given the serial run-

time is O(n2 · 2n), optimal parallel run-time is O(n2 · 2n−k), which is achieved by our parallel

algorithm when 2n−k > k. This can be restated as n > k + log k, or p = 2k = O
(
1
n · 2

n
)
.

Thus, the parallel algorithm can utilize processors up to exponential in n without sacrificing

work-optimality.

The mapping strategy adopted by the parallel algorithm also reduces the number of com-

munications from n to k for each lattice node. Recall that a lattice node A at level l receives l

communications in computing its F and Q∗ values, and subsequently communicates these val-

ues to n− l neighbors, for a total of n communications. Each of these correspond to inverting

one of the bits in ωA. In case of p = 2k processors, inverting of one of the first (n − k) bits

results in a lattice node assigned to the same processor. Only bit inversions in one of the last

k bits requires communication with a neighbor. Thus, communication complexity reduces to

O(kn) per lattice node, while the computational complexity remains at O(n2) per lattice node
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for the computation of the Q∗ and F values. In addition, it is highly likely that the scoring

function computation itself dominates the O(n2) compute time for the rest. Thus, this dispar-

ity in computation and communication complexity in favor of relatively lower communication

complexity should aid in achieving good scaling in practice.

We now consider the cost of computing s(Xi, A) for all subsets A, and for each Xi /∈ A. The

cost of computing s is particular to the application domain and the specific scoring function

used. However, s(Xi, A) is computed from the m observations of the random variables in A

and the random variable Xi; thus, the run-time for computing s(Xi, A) is Ω(m|A|). In the

analysis that follows, we consider the scoring function based on the MDL principle, which was

utilized in this work, for which computing s(Xi, A) takes O(m|A|) time. Serially, for a subset

A, the F computations take O((n− |A|) · (|A|+m|A|)) time and the Q computations still take

O(|A|) time. The cost of computing F functions, Q∗, and the last element of π∗ for all subsets

A is given by

O

(
n∑
i=0

(
n

i

)
· ((n− i) · (i+m · i) + i)

)
= O

(
m · n2 · 2n

)
,

where |A| = i.

In parallel, as described above, the number of parallel time steps is given by 2n−k + k, and

the computation ofQ∗, F , and the last element of π∗ for a subsetA now takes (n− |A|) · (|A|+m|A|) + |A|.

Thus, the total cost is given by

O

2n−k+k∑
t=0

((n− |A|) · (|A|+m|A|) + |A|)

 = O
(
m · n2 · 2n−k

)
.

Note that no communication is involved in the computation of s functions, which further widens

the complexity gap between computation and communication, aiding the practical scalability
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of the algorithm.

2.3.3 Space Complexity

At level l ∈ [0, n] of the subset lattice, for each of the
(
n
l

)
subsets of size l, the sequential

algorithm stores (n− l) F scores and an optimal ordering π∗ of size l. Thus a total of

n∑
l=0

(
n

l

)
· n

elements are stored. As values computed at one level of the lattice are used only at the next

level, storing only two levels at a time is sufficient. The maximum number of elements stored

at a level occurs when l = dn2 e, which using Stirling’s formula approximates to
√

2
π ·

1√
n
· 2n · n.

In the parallel algorithm, suppose that processor with id r is computing for a lattice node

corresponding to a subset A. Let i = µ (ωA[1, n− k]). At this node, n− i− µ(r) F functions

and the corresponding π∗(A) of size |A| = i + µ(r) are computed and stored. Each processor

stores computed results for
(
n−k
i

)
subsets of size i+ µ(r), for a total of

n−k∑
i=0

(
n− k
i

)
· n

elements. As before, the maximum storage needed at the same time is given by the maxi-

mum value of the summation of two consecutive terms in the above summation. The maxi-

mum value of a term occurs when i =
⌈
n−k
2

⌉
, which using Stirling’s formula is approximately√

2
π ·

1√
n−k · 2

n−k · n. Thus, the ratio serial/parallel of the maximum number of stored elements

yields
√
n− k√
n
· 2k ≥ 1√

2
· 2k, for k ≤ n

2
.
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Therefore, the storage per processor used by the parallel algorithm is within a factor of
√

2 ≈

1.41 of the optimal.

2.4 Experimental Results

We developed an implementation of our parallel algorithm in C++ and MPI. To assess

its scalability, we used the resulting code to run a series of tests on an IBM Blue Gene/P

system and an AMD Opteron InfiniBand cluster. The Blue Gene/P system is comprised of

four 850 MHz PowerPC 450 cores and 2 GB main memory per node (512 MB per PowerPC

core). All experiments were run with one MPI process per core. For the AMD cluster, we used

the TACC Ranger system on the TeraGrid with each node consisting of four AMD Opteron

2.3 GHz quad-core processors and 32 GB memory per node (2 GB per core). All experiments

were run with one MPI process per core, with all 16 cores per node sharing the communication

channel.

We used the SynTReN package [Van den Bulcke et al., 2006] that synthetically generates

observations for the specified number of genes. This easily allows us to change the number of

variables, and the number of observations to test the performance with various data sets. As an

optimization criterion, we implemented the Minimum Description Length (MDL) score [Lam

and Bacchus, 1994], which can be evaluated in linear time with respect to the number of

observations in the input data set (reviewed in Section 1.2.3). In terms of the earlier discussion

on run-time complexity, the run-time of MDL(Xi, A) is O(m|A|), meeting the lower bound

for any scoring function. As scalability improves with higher run-time complexity of the

scoring function, choosing a scoring function with the lowest possible run-time complexity also

provides the best way to demonstrate the scalability of the algorithm. The quality of the
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Table 2.1 Run-times in seconds on the IBM Blue Gene/P (left) and the
AMD Opteron InfiniBand cluster (right) for test data with
n = 24 genes. The number of observations is denoted by m.

No. Cores IBM Blue Gene/P AMD InfiniBand Cluster

m = 200 m = 1, 000 m = 200 m = 1, 000

32 1127 4587 209 876

64 578 2590 112 446

128 274 1280 69 229

256 133 641 38.54 119

512 65 319 24.1 65

1024 33 159 14.83 36.39

2048 16 79 8.69 18.43

learned networks is evaluated extensively in Section 2.5.1.

2.4.1 Performance Analysis for Varying Number of Observations

In the first set of experiments we measured how the number of observations influences the

scalability of our solution, by fixing the number of genes. A smaller number of observations

lowers the computational complexity, but leaves the communication complexity unaffected.

This creates the possibility that the cost of the communication dominates, which can limit

scalability. However, the observations need to grow as a function of the number of variables,

to be able to derive a meaningful network. To run the experiments we used two data sets

consisting of n = 24 genes with m = 200 and m = 1, 000 observations, respectively. Run-times

measured as a function of the number of processors and corresponding relative speedups on

the IBM Blue Gene/P and the AMD Opteron InfiniBand cluster are presented in Table 2.1

and Figure 2.3, respectively.

The execution time increases linearly with the number of observations, and at the same

time our implementation on the Blue Gene/P maintains close to linear scalability up to 2, 048

cores. The super linear speedup for the data set with 200 observations can be explained
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Figure 2.3 Relative speedup as compared to a 32-core run for test data
with n = 24 on (a) IBM Blue Gene/P and (b) AMD Opteron
InfiniBand cluster.

with cache effects. These results indicate that computation is the dominant factor, even for

small number of observations. The results on the AMD cluster are not as good due to the

differences in the performance of the interconnection network. The Blue Gene/P network has

low latency. In addition, 16 MPI processes running on one node of the AMD cluster share the

same InfiniBand port, diluting the bandwidth available per core. The results for m = 1, 000

on the AMD cluster exhibit much better scaling than for m = 200. This is due to the linear

increase in computation as a function of m, while the communication remains unaffected.

2.4.2 Performance Analysis for Varying Number of Genes

In the second set of experiments we studied the performance of the parallel algorithm with

respect to the number of input variables. We processed a collection of data sets with fixed

number of observations m = 1, 000, and varying number of genes n, and recorded the resulting

run-times. Obtained results are summarized in Table 2.2 and Figure 2.4, respectively.

The run-times are reflective of the exponential dependence on n. Note that memory re-

quired also grows exponentially with n, even though the entire lattice need not be stored
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Table 2.2 Run-time results in seconds on the IBM Blue Gene/P (left) and
the AMD Opteron InfiniBand cluster (right) for test data with
m = 1, 000 observations. The number of genes is denoted by n.

No. Cores IBM Blue Gene/P AMD InfiniBand Cluster

n = 16 n = 24 n = 16 n = 24

32 13.5 4587 2.24 876

64 8.32 2590 1.16 446

128 4.21 1280 0.63 229

256 2.16 641 0.33 119

512 1.13 319 0.18 65

1024 0.61 159 0.12 36.39

2048 0.36 79 0.08 18.43
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Figure 2.4 Relative speedup as compared to a 32-core run for the test
data with m = 1, 000 on (a) IBM Blue Gene/P and (b) AMD
Opteron InfiniBand cluster.
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throughout. Thus, going parallel is advantageous both from the perspective of run-time and

the ability to solve larger problems. Using 2,048 cores, our implementation was able to learn

the structure of a BN for 33 genes in 1 hour and 14 minutes. This task would require days if

executed on a sequential computer [Ott et al.].

2.5 Biological Validation and Application to Arabidopsis Thaliana

Further we proceed to assess the quality of the learned networks using both synthetic and

real biological gene expression data.

2.5.1 Synthetic Validation using SynTReN

Figure 2.5 Diagram of synthetic data generation procedure using
SynTReN .

SynTReN is a software package for synthetic gene expression data generation, which al-

lows us to control the number of genes (n) as well as observations (m) in the generated

datasets [Van den Bulcke et al., 2006]. We used SynTReN to generate 5 gene networks
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Figure 2.6 Network 1 of the five synthetically generated gene networks of
24 genes. Three self-loops are present at nodes 4, 9, and 21,
respectively.

(biological noise: 0.25, experimental noise: 0.01, input noise: 0.01, percent activators: 0.5, cor-

relation noise: 0.1, subnetwork selection: cluster addition). Self-loops were introduced in some

of the networks to test how they affect the quality of the learned networks (see Figure 2.6). To

assess performance over a range of parameters, we consider three different m values: m = 32,

128, and 512 (Figure 2.5). For each of the five networks, 10 datasets of sizes n = 24 and

respectively m = 32, 128, and 512 were generated, corresponding to data matrices: D24×32,

D24×128, and D24×512 (total of 5× 3× 10 = 150 datasets). Each data-matrix was subjected to

standardization and discretization to three levels corresponding to under-expressed (< −0.75),

over-expressed (≥ 0.75), and no change (remaining values). For each resulting discretized

data matrix a network was induced. Experiments were performed to compare correctness of

networks learned using the MDL vs BDe scoring functions, the exact vs a heuristic Bayesian

network structure learning method as implemented in the software package Banjo [Hartemink],

as well as the exact vs an information theoretic approach as implemented by the software tool

TINGe [Zola et al., 2010]. The quality of the networks is also assessed as a function of the

number of observations m.

To evaluate the correctness of the learned networks, we compare them to the “ground
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Table 2.3 Exact structure learning with MDL score. Sample size is denoted
by m, and for each m, lines 1 through 5 report for networks 1
through 5, respectively; −− indicate empty networks.

m = 32

TP FP TN FN SEN SPEC PREC F -score

– – – – – – – –

2.00 0.00 251.00 23.00 0.08 1.00 1.00 0.15

1.60 1.00 252.00 21.40 0.07 1.00 0.62 0.12

1.00 0.10 247.90 27.00 0.04 1.00 0.95 0.07

1.13 0.50 252.50 21.88 0.05 1.00 0.77 0.09

m = 128

TP FP TN FN SEN SPEC PREC F -score

1.00 1.67 251.33 22.00 0.04 0.99 0.39 0.08

3.50 2.30 248.70 21.50 0.14 0.99 0.62 0.23

2.80 1.70 251.30 20.20 0.12 0.99 0.64 0.20

2.00 3.30 244.70 26.00 0.07 0.99 0.38 0.12

3.70 0.80 252.20 19.30 0.16 1.00 0.82 0.27

m = 512

TP FP TN FN SEN SPEC PREC F -score

10.60 2.90 250.10 12.40 0.46 0.99 0.78 0.58

9.60 10.00 241.00 15.40 0.38 0.96 0.49 0.43

9.10 9.80 243.20 13.90 0.40 0.96 0.48 0.43

10.60 6.50 241.50 17.40 0.38 0.97 0.62 0.47

10.80 5.20 247.80 12.20 0.47 0.98 0.68 0.55

truth” networks generated by SynTReN . Directionality can accurately be inferred only in

presence of intervention data (e.g. knocking out a gene, over-expressing a gene). Because

SynTReN does not allow for the generation of such data, to avoid penalizing networks which

belong to the same Markov equivalent class, and therefore are indistinguishable by Bayesian

scoring functions (reviewed in Sections 1.2.3 and 1.2.8), we ignore directions and compare the

networks as undirected. We report true positives (TP), false positives (FP), true negatives

(TN), false negatives (TN), and compute recall (sensitivity)
[

TP
TP+FN

]
, specificity

[
TN

TN+FP

]
,

precision
[

TP
TP+FP

]
, and F-score

[
2 · precision·recallprecision+recal

]
. The results for each network (average over

10 samples for each m) are summarized in the Tables below.
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Table 2.4 Exact structure learning with BDe score. Sample size is denoted
by m, and for each m, lines 1 through 5 report for networks 1
through 5, respectively.

m = 32 Exact (BDe) Exact (MDL)

TP FP TN FN SEN SPEC PREC F -score F -score

7.5 37.2 215.8 15.5 0.33 0.85 0.17 0.22 –

9.70 34.1 216.9 15.3 0.39 0.86 0.22 0.28 0.15

6.50 38.5 214.5 16.5 0.28 0.85 0.14 0.19 0.12

8.30 38.9 209.1 19.7 0.3 0.84 0.18 0.22 0.07

9.10 31.6 221.4 13.9 0.4 0.88 0.23 0.29 0.09

m = 128

TP FP TN FN SEN SPEC PREC F -score F -score

12.30 11 242 10.7 0.53 0.96 0.53 0.53 0.08

11.40 21.4 229.6 13.6 0.46 0.91 0.35 0.4 0.23

11.60 25.9 227.1 11.4 0.5 0.9 0.31 0.38 0.2

8.80 23.5 224.5 19.2 0.31 0.91 0.27 0.29 0.12

12.30 17.1 235.9 10.7 0.53 0.93 0.42 0.47 0.27

m = 512

TP FP TN FN SEN SPEC PREC F -score F -score

16.40 10.9 242.1 6.6 0.71 0.96 0.6 0.65 0.58

19.40 20.1 230.9 5.6 0.78 0.92 0.49 0.6 0.43

18.40 23.7 229.3 4.6 0.8 0.91 0.44 0.57 0.43

16.40 25.6 222.4 11.6 0.59 0.9 0.39 0.47 0.47

19.10 16.8 236.2 3.9 0.83 0.93 0.53 0.65 0.55

2.5.1.1 Exact Learning: MDL vs BDe Scores

We compare the quality of networks learned using the MDL and BDe scores, and report

the summary statistics in Tables 2.3 and 2.4, respectively. Our results indicate that sample

size of m = 32 is insufficient for the MDL scoring function to make meaningful predictions.

In particular, for network 1 when m = 32 the algorithm learned empty networks (all variables

were independent). In the case of m = 128, while the TP rates are low as compared to the

BDe results, the FP rates are also much lower than those of BDe networks. Overall the MDL

scoring function is more conservative than the BDe scoring function, in that it prefers graphs

with fewer edges, as is expected in theory [Bouckaert, 1995].
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2.5.1.2 Heuristic (Banjo) vs Exact with BDe Score

We compare the quality of the networks learned using the exact algorithm to those learned

using a heuristic algorithm. To generate the latter, we use a well-established software Banjo

developed by Hartemink [Hartemink], which implements simulated annealing with BDe scoring

function (equivalent sample size: 1, and maximum parents: 7). Without bounding the node

in-degree our algorithm learns a network of 24 variables and 200 and 1000 observations in

8.69s and 18.43s, respectively (Table 2.1). We let the heuristic algorithm run for 30s in all

cases. Note that limiting the number of parents effectively reduces the search space of the

heuristic algorithm (imposed by implementation). Since in the true networks, no variable has

more than 3 parents, this limitation is favorable to the performance of the heuristic algorithm

as it decreases the possible DAGs in the search space. The summary statistics computed by

the exact algorithm and Banjo are given in Tables 2.4 and 2.5, respectively.

A comparison of the average F -scores between the two algorithms for all networks and

sample sizes is given in Figure 2.7. It can be seen that on average, although the results are

close, the exact algorithm generally performs better than the heuristic algorithm, with the

exception of the case for m = 32 and network 1. We find this result interesting, as the average

BDe scores over the 10 samples computed by the exact algorithm and Banjo in this case were

−620.25 and −624.30, respectively. This indicates that the exact algorithm does find a “more

optimal” than the heuristic algorithm network, w.r.t. to the BDe score. However, in this

case, this does not depict the biological structure more closely. Recall that network 1 has

three self-loops. We believe that these self-loops (Figure 2.6) are a possible cause for this

outcome. To allow for modeling of loops different models (e.g. dynamic Bayesian networks),

or a combination of models, could be considered.
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Table 2.5 Heuristic structure learning with BDe score (Banjo). Sample
size is denoted by m, and for each m, lines 1 through 5 report
for networks 1 through 5, respectively.

m = 32 Banjo Exact (BDe)

TP FP TN FN SEN SPEC PREC F -score F -score

7.56 34 219 15.44 0.33 0.87 0.18 0.23 0.22

8.44 35.44 215.56 16.56 0.34 0.86 0.19 0.24 0.28

7 42.89 210.11 16 0.3 0.83 0.14 0.19 0.19

8.1 40.9 207.1 19.9 0.29 0.84 0.16 0.21 0.22

9.2 30.8 222.2 13.8 0.4 0.88 0.23 0.29 0.29

m = 128

TP FP TN FN SEN SPEC PREC F -score F -score

12 15 238 11 0.52 0.94 0.45 0.48 0.53

11.1 24.7 226.3 13.9 0.44 0.9 0.31 0.37 0.4

10.8 29.3 223.7 12.2 0.47 0.88 0.27 0.34 0.38

8.75 25.75 222.25 19.25 0.31 0.9 0.25 0.28 0.29

12.6 19.8 233.2 10.4 0.55 0.92 0.39 0.45 0.47

m = 512

TP FP TN FN SEN SPEC PREC F -score F -score

16.5 14.7 238.3 6.5 0.72 0.94 0.53 0.61 0.65

19 24.1 226.9 6 0.76 0.9 0.44 0.56 0.6

18.8 27.1 225.9 4.2 0.82 0.89 0.41 0.55 0.57

15.8 30.1 217.9 12.2 0.56 0.88 0.34 0.43 0.47

19.7 20.2 232.8 3.3 0.86 0.92 0.49 0.63 0.65
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[
2 · precision·recallprecision+recal

]
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Table 2.6 Information theoretic approach (TINGe). Sample size is denoted
by m, and for each m, lines 1 through 5 report for networks 1
through 5, respectively.

m = 32 TINGe Exact (BDe)

TP FP TN FN SEN SPEC PREC F -score F -score

15.8 43.6 209.4 7.2 0.69 0.83 0.27 0.38 0.22

19.1 74.8 176.2 5.9 0.76 0.7 0.21 0.33 0.28

21.6 118.9 134.1 1.4 0.94 0.53 0.16 0.27 0.19

19 79.4 168.6 9 0.68 0.68 0.2 0.31 0.22

18 43.6 209.4 5 0.78 0.83 0.3 0.43 0.29

m = 128

TP FP TN FN SEN SPEC PREC F -score F -score

20.1 26.9 226.1 2.9 0.87 0.89 0.43 0.58 0.53

21.3 81.6 169.4 3.7 0.85 0.67 0.21 0.33 0.4

23 132.2 120.8 0 1 0.48 0.15 0.26 0.38

19.4 72 176 8.6 0.69 0.71 0.22 0.33 0.29

22.8 61.2 191.8 0.2 0.99 0.76 0.27 0.43 0.47

m = 512

TP FP TN FN SEN SPEC PREC F -score F -score

21.3 22.2 230.8 1.7 0.93 0.91 0.49 0.64 0.65

21.1 82.7 168.3 3.9 0.84 0.67 0.2 0.33 0.6

23 134.2 118.8 0 1 0.47 0.15 0.26 0.57

21.4 63.4 184.6 6.6 0.76 0.74 0.25 0.38 0.47

23 64.5 188.5 0 1 0.75 0.26 0.42 0.65

2.5.1.3 Exact BN Learning with BDe Score vs Information Theoretic Ap-

proach (TINGe)

Finally, we compare the quality of the networks learned by the exact BN algorithm with

BDe score to an information theoretic approach, implemented in TINGe [Zola et al., 2010].

TINGe first computes pairwise mutual information between every pair of genes, to create an

initial network, and later uses a post-processing procedure, called Data Processing Inequality

(DPI), which attempts to remove indirect interactions. The summary statistics computed for

TINGe are given in Tables 2.6.

We draw attention to the comparison of the F -scores of both approaches. When the
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number observations is small (m = 32), the information theoretic approach performs better.

However, as m increases, the exact BN learning improves and outperforms the information

theoretic approach. This is an interesting observation, in that combining the two approaches

and applying them based on the number of available observations could yield the best of both.

2.5.1.4 Concluding Remarks on Synthetic Data Validation

In conclusion, we observed that in all cases, including different scoring functions and differ-

ent approaches, the quality of the networks improves consistently as the number of observations

m increases. When compared to exact learning with MDL score, the BDe score exact learning

produces more accurate networks. Exact learning with BDe score also performs better than

heuristic BN learning, as implemented in Banjo. Finally, an information theoretic approach

which uses DPI to remove indirect interactions (TINGe), performs better than exact BN

learning with BDe score when only a few observations are available. However, the exact BN

approach with BDe outperforms TINGe for larger values of m. Thus, exact BN structure

learning with BDe score produces the most accurate networks, provided that sufficient number

of observations are available.

2.5.2 Application to the Carotenoid Biosynthesis Pathway in Arabidopsis Thaliana

To evaluate the biological relevance of the networks learned by the exact algorithm for

BN structure learning, we applied our software to a set of genes known to be involved in the

Carotenoid Biosynthesis pathway in Arabidospis thaliana.

Carotenoids are essential in the human diet as a major source of vitamin A (provitamine A

carotenoids), antioxidant activity, and limiting age-related degeneration of the eye [Cazzonelli

et al., 2010]. In plants, the colors resulting from carotenoid pigments attract insects for pol-
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Figure 2.8 Diagram of the Key Steps in the Carotenoid Biosynthesis in
Arabidopsis.

lination and seed dispersal. Carotenoids are required for photosynthesis, light harvesting and

photoprotection, as well as, for the production of shoot and root growth hormone ABA (See

Figure 2.8).

While the carotenoid biosynthesis pathway is actively studied, it is not yet fully under-

stood. Two steps are considered key for the regulation of the pathway. The first one is

the light-responsive enzyme PSY catalyzing the synthesis of phytoene from geranylgeranyl

pyrophosphate. The second one is considered to be the bifurcation point after lycopene, to

produce epsilon- and beta-carotenoids (left- and right-hand branches of the pathway in Fig-

ure 2.8, respectively). We will use this information as prior knowledge in our attempt to

evaluate the biological relevance of the learned transcription network.
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2.5.2.1 Data Preparation

A list of 13 genes (Arabidopsis Gene Identifiers: AT1G06820, AT1G10830, AT3G04870,

AT1G08550, AT1G31800, AT3G10230, AT3G53130, AT4G14210, AT4G25700, AT5G17230,

AT5G52570, AT5G57030, AT5G67030) known to be involved in the carotenoid biosynthe-

sis pathway was downloaded from the Plant Metabolic Network portal [PMN]. Two different

sets of experimental conditions were collected from the NASCArray [NAS, 2009], AtGenEx-

press [TAI, 2009], ArrayExpress [Arr, 2009], and GEO [GEO, 2009] repositories, preprocessed,

and analyzed: 1) targeted light experiments, and 2) all available microarray chips (all condi-

tions). For the latter dataset (all experiments) we used the dataset generated and preprocessed

for whole genome network analysis by Aluru et. al. [Aluru et al., Under Review]. This resulted

in a collection of 3, 137 chips. For the former dataset, 12 experiments were hand picked and

collected from the NASCArrays [NAS, 2009] and AtGenExpress [TAI, 2009] repositories. After

preprocessing, this dataset contained 508 chips. For pre-processing, we followed the steps in

quality control, normalization, and data filtering described in Aluru et. al. [Aluru et al., Under

Review]. We briefly review them here for completeness.

Data Preprocessing

A total of 3, 546 non-redundant raw CEL files were collected initially. Various quality

controls metrics were examined, such as BioB spike-in transcript and scaling factor (removed

if fell outside 3-fold of mean scale factor or did not call BioB present). Outlier chips were

disregarded using the affyPLM Bioconductor library (removed chips which had relative log

expression spread around zero greater than 0.75 IQR, or normalized unscaled standard errors

spread around one greater than 0.075 IQR). Affymetrix probe intensities were converted to

expression values using the MAS 5.0 procedure (scaling factor of 1000), log2 transformed and
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(a) Bayesian Network (b) Pairwise MI-based Network

Figure 2.9 Gene networks generated using the 2.9(a) BN model and 2.9(b)
MI-based model under light experimental conditions.

normalized using quantile normalization. Finally, genes with expression profile IQR lower than

0.65 were discarded.

2.5.2.2 Networks Generation and Discussion

We used our software, ParaBayL, to learn a BN structure from the two data matrices of

508 light- and 3, 137 all-experimental conditions. We also used TINGe which computes a co-

expression network based on pairwise mutual information and uses Data Processing Inequality

(DPI) to remove indirect interactions (parameters: p-value for DPI of 0.001) [Zola et al., 2010].

We color-coded the genes corresponding to each of the three branches of the pathway



www.manaraa.com

45

with green for the primary branch, purple for the beta- and blue for the epsilon-carotenoids

branches. We also color-coded the edges to indicate interactions between genes from the

different branches, with red for edges between primary and beta-carotenoids branches, tiel

for edges between primary and epsilon-carotenoids branches, and olive for edges between the

epsilon- and beta-carotenoid branches. We caution the reader that the generated networks

in Figure 2.9 were learned from transcription data alone and that the edges have different

meaning from the edges in the metabolic pathway depicted in Figure 2.8. Thus, we do not

expect an exact match between the two diagrams; the expectation is that genes with similar

function will form close modules in the transcription network.

Targeted Light Experimental Conditions

The resulting networks under light conditions are shown in Figure 2.9. Several observations

can be made from Figure 2.9(a). First, we notice that the genes corresponding to the epsilon-

carotenoids and those corresponding to the beta-carotenoids branch, are interconnected within

their respective branches and form neat modules. The genes corresponding to the primary

branch of the metabolic pathway are also interconnected. Interestingly, we notice that the

edges PSY–PDS, PDS–Z-ISO, Z-ISO–ZDS connect genes corresponding to enzymes required

for consecutive reactions in the metabolic pathway. Similarly, in the other longer branch of

the beta-carotenoids, we have the edges LYC–B1 (B2), B1–NPQ1, B2–ABA1, where both B1

and B2 catalyze the β-carotene to zeaxanthin reactions. Further consideration of the edges

between the beta-and epsilon-carotenoids branches (olive color), reveals that an edges between

B1 and B2 on one hand and LUT5 on another, are to be expected as B1 and B2 together

with LUT5 catalyze the reaction α-carotene → zeinoxanthin, and therefore they are all likely

to be co-regulated. In the learned BN network, we find an edge between B1 and LUT5. It is
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possible that the rest of the olive edges might be an indirect mitigation of this co-regulation,

but there is no hard evidence to make this claim. Finally, we notice that on average, there are

more edges present between the primary branch and the beta-carotenoid branch (tiel edges),

and also the primary branch and the epsilon-carotenoids branch (red edges), than between the

remaining two branches (olive edges), which could be due to the regulatory role of the primary

branch downstream. Again, this is only a speculation, and no firm claims can be made until

further biological validation is carried out.

In comparison, the pairwise MI-based network depicted in Figure 2.9(b) from the same

data appears more dense with a total of 48 edges as compared to 28 in the Bayesian network

model (≈ 42% more edges). Overall, in this network as well the beta-carotenoid branch genes

are interconnected but the NPQ1 gene is only connected to LYC. Similarly, the genes in the

primary pathway are also interconnected, however the linearity we observed in the Bayesian

network is not as apparent, with PDS connecting directly to ZDS instead of through Z-ISO.

One important connection that does appear in this network is a link between CRTISO from

the primary branch and LYC. This is one edge we would have expected to see in the Bayesian

network as well; however it appears to be mitigated via other edges indirectly. Although the

pairwise MI-based network does call quite a few more edges than the Bayesian network, with

the potential of higher FP.

All Experimental Conditions

We note that in the filtering step of the preprocessing pipeline, 2 genes (ZDS, CRTISO)

were removed from the initial set of 13 in the all-experiments data set. The resulting networks

are shown in Figure 2.10. In the presence of all experimental conditions, many edges are

resolved with the Bayesian model resulting in a total of 21 edges and the MI-based model
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(a) Bayesian Network (b) Pairwise MI-based Network

Figure 2.10 Gene networks generated using the 2.10(a) BN model
and 2.10(b) MI-based model under light experimental condi-
tions.

with 24 (exactly half of the 48 edges under light conditions only). The two methods also

appear to agree on most of the predicted edges. In both networks, we see a nice module for

the luteins, and the same linearity trend in the primary branch (PSY–PDS–Z-ISO), which

does correspond to order in which the metabolic reactions occur, as discussed above. The

beta-carotenoid branch genes in both networks now are not as tightly linked, and LYC in both

networks links directly to PDS and PSY.
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CHAPTER 3. Parallel Globally Optimal Structure Learning of Bayesian

Networks with Bounded Node In-degree

We investigate structure learning with user-specified bounded in-degree d, which is the

maximum allowed in-degree (or equivalently, the number of parents) of any node in the network.

We show that for d < 1
3n − logmn the asymptotic run-time complexity remains unaffected

as a function of d. An important consequence of this result is that networks with a generous

allowance of bounded in-degree can be learnt in the same time as networks where only constant

in-degree is allowed. We also show that d ≥ dn2 e results in the same asymptotic run-time

complexity as d = n− 1, where no restriction is placed on the in-degree.

3.1 Structure Learning with Bounded Node In-degree

As noted before, the run-time complexity of exact structure learning is dominated by

the total cost of computing the s(Xi, A) functions, even when the cost is equal to the lower

bound of Ω(m|A|). This raises the possibility of designing a faster algorithm by restricting the

maximum in-degree, or equivalently the number of parents, of any node in the network. Given

a pre-specified maximum node in-degree d, the BN structure can be learned more efficiently

by only considering subsets of size at most d as potential parents sets. We refer to this as the

bounded in-degree criterion. This is a reasonable assumption as it is unlikely that any node

will have all other nodes as parents. In this Section we first describe modifications to the
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general algorithm presented in Section 2.2 for exploiting bounded in-degree, and subsequently

characterize run-time complexity as a function of the degree d.

3.1.1 Algorithm for Bounded In-degree

Definition 3.1 Let Xi ∈ X and A ⊆ X − {Xi}. Let Fd denote the highest possible score that

can be obtained by choosing no more than d parents from A, for some pre-specified integer

d < n.

Fd (Xi, A) = max
B⊆A, |B|≤d

s(Xi, B).

For a non-empty set A, Fd can be computed based on the following recursive formulation:

Fd (Xi, A) =


F (Xi, A) , if |A| ≤ d

max
Xj∈A

Fd (Xi, A− {Xj}) , otherwise

= max


s (Xi, A) , if |A| ≤ d

max
Xj∈A

Fd (Xi, A− {Xj}) .

Using the above definition to compute the optimal parent sets under the maximum in-

degree constraint, an optimal ordering π∗d (A) is an ordering with which an optimal network

on A with no more than d parents per node is consistent. The following definition of optimal

network score is employed:

Definition 3.2 Given A ⊆ X and an ordering πd(A), let Qd (A, πd(A)) denote the optimal
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score of a network with maximum in-degree d on A, which is consistent with πd(A):

Qd (A, πd(A)) =
∑
Xj∈A

Fd (Xj , {Xq | Xq precedes Xj in πd (A)}) .

Optimal score of a bounded node in-degree network on A ⊆ X is then given by

Q∗d(A) = Qd (A, π∗d (A)). As before, function Qd can be computed using a recursive formulation

as follows:

X∗j = argmax
Xj∈A

Qd (A, π∗d(A− {Xj})Xj)

= argmax
Xj∈A

(Fd (Xj , A− {Xj}) +Q∗d (A− {Xj})) ,

Q∗d (A) = Fd
(
X∗j , A−

{
X∗j
})

+Q∗d
(
A−

{
X∗j
})
.

Using the above definitions of Fd and Qd in place of F and Q, the dynamic programming

algorithm described in Section 2 works in a similar fashion. Note that the algorithm that

places no restriction on in-degree can be thought of as a special case of the bounded in-degree

algorithm for d = n− 1.

3.1.2 Characterizing Run-Time Complexity as a Function of d

Intuitively, the run-time complexity of structure learning should increase with increase in

d. We again consider the class of scoring functions which can be computed in linear time on

the underlying data to be considered – i.e., computing s(Xi, A) takes O(m|A|) time. Consider

d ≤ bn2 c. In computing functions Fd and Qd over all nodes in the lattice, the s functions are

computed only on subsets of size ≤ d. Therefore, the run-time complexity is given by

O

(
n∑
i=0

(
n

i

)
[(n− i) · i+ i] +

d∑
i=0

(
n

i

)
[(n− i) ·m · i+ i]

)
= O

(
n2 · 2n +m · n · d2 ·

(
n

d

))
.
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Lemma 3.1 If d < 1
3n− 2 log n, then d2

(
n
d

)
= O (2n).

Proof 2
(
n
i+1

)
= n−i

i+1 ·
(
n
i

)
. Therefore,

(
n
i+1

)
≥ 2
(
n
i

)
if and only if n−i

i+1 ≥ 2, or i ≤ 1
3n−

2
3 . Let

d < 1
3n− 2 log n and j = 2 log n− 1. Consider the j + 1 consecutive binomial coefficients

(
n
i

)
for d ≤ i ≤ d + j. Each successive binomial coefficient is at least twice as big as the previous

one. Then:

2n =
∑n

i=0

(
n
i

)
>
∑d+j

i=d

(
n
i

)
+
∑n−d

i=n−d−j
(
n
i

)
= 2 ·

∑d+j
i=d

(
n
i

)
≥ 2 ·

(
1 + 2 + 22 + · · ·+ 2j

)
·
(
n
d

)
> 2 · 2j ·

(
n
d

)
= n2 ·

(
n
d

)
> d2 ·

(
n
d

)
.

Corollary 3.2 For d < 1
3n−logmn, the run-time complexity of structure learning is O(n2·2n).

Proof 3 For d < 1
3n−2 log n− log m

n = 1
3n− logmn, an additional log m

n consecutive binomial

coefficients exhibit the doubling property. Thus, m
n · d

2 ·
(
n
d

)
= O(2n).

Corollary 3.2 is significant because it stipulates that for d values up to the bound prescribed,

the asymptotic run-time complexity is as if no s functions are computed at all. Thus, there is no

value to choosing d below this bound and such a choice would be needlessly restrictive without

any gains in the run-time. Although networks for large n cannot be computed in parallel due

to exponential dependence of run-time on n, it is interesting to note that d can asymptotically

grow as 1
3n without impacting the run-time complexity. If we can reasonably assume that no
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node will have more than as many parents, structure learning becomes unaffected by the cost

of computing s functions. Note that Lemma 3.1 does not provide a tight bound as it ignores

the contribution of all but 2(j + 1) terms in the n + 1 binomial coefficient summation. As a

result, the value below which decreasing d does not provide any tangible performance gains is

likely to be even higher in practice. This will be empirically shown in the next Section.

Lemma 3.3 For d ≥ dn2 e, the asymptotic run-time complexity is the same as for d = n− 1.

Proof 4 Follows from a straightforward inspection of the run-time, which is

O

(
n∑
i=0

(
n

i

)
((n− i) · i+ i) +

d∑
i=0

(
n

i

)
((n− i) ·m · i+ i)

)
.

In the second term, given the symmetry of binomial coefficients, the summation for d ≥ dn2 e is

at least half as much as the summation for d = n− 1.

Taken together, Corollary 3.2 and Lemma 3.3 establish a range of values of d where run-time

performance varies as a function of d. There is no reason to choose a value of d smaller than

what is established by Corollary 3.2 as it restricts the in-degree further without providing any

compensatory gains in run-time. Similarly, choosing a value of d greater than or equal to dn2 e

is unnecessary as the run-time complexity is equivalent to the unrestricted case.

3.2 Experimental Analysis for Bounded Node In-degree

In this set of experiments, we investigated the empirical behavior of the modified parallel

algorithm described in Section 3.1. For a given test data with n genes and m observations,

we recorded the run-time for learning the BN structure while varying d from 1 to n − 1.

We considered two data sets of n = 24 and n = 30 genes, respectively, both with m = 200
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Figure 3.1 Run time as a function of the node in-degree bound d of the
modified parallel algorithm for BN structure learning. Test data
for (a) n = 24 genes executed on 32 cores, and (b) n = 30 genes
executed on 2, 048 cores, for varying d = 1, 2, . . . , n− 1.

observations. The experiments were run on the IBM Blue Gene/P system. The run-times, in

seconds, as a function of d are summarized in Figure 3.1.

Based on previous analysis, we expect the run-time to be flat until d crosses the bound

specified by Corollary 3.2, raising as a function of d until reaching a second plateau after d

reaches 1
2n. This behavior can be clearly seen in Figures 3.1(a) and 3.1(b), for two different

values of n when run on two different numbers of cores, respectively. The onset of the second

plateau is around the d = 1
2n point in both cases, closely conforming to the theoretical predic-

tion. Note that since m = 200 and n is relatively small, the bound predicted by Corollary 3.2

in both cases actually turns out to be negative. However, as pointed out, this bound is rather

conservative due to the relaxed analysis and the value of d at which the run-time begins its

upward trajectory is expected to be better than the theoretical prediction. In case of the

experiments shown, this happens at d = 4 for n = 24 and at d = 5 for n = 30.
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3.3 Contributions

To our knowledge, the bounds established for run-time as a function of the maximum

in-degree are new both in sequential and parallel settings.
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CHAPTER 4. Parallel Algorithmic Framework for Large-scale Bayesian

Network Structure Learning

4.1 Introduction

To enable large-scale BN inference heuristic-based serial algorithms have been developed,

which are still not suitable for gene network modeling on a whole genome scale for large

genomes [Tsamardinos et al., 2006]. To extend heuristic-based BN inference to networks of

thousands of variables and observations, we develop a two-phase parallel approach. In phase

one, a set of candidate parents is learned for each variable, utilizing a state of the art constraint-

based heuristic method. In phase two, a heuristic score-optimization method is developed,

which is inspired by exact parents learning algorithm, to induce the BN structure from the

pre-computed in phase one sets of candidate parents. The two phases are independent in the

sense that phase two admits any other method for the pre-computation of candidate parents.

In addition, we extend phase one to learning Markov boundaries. Performance of each phase

is assessed with respect to achieved speedup and ability to solve larger problems, as well as,

quality of the learned network on synthetic data.

4.1.0.1 Previous Work

As discussed in Chapter 2, exact structure learning of BNs is NP-hard even for the instance

of the problem when the node in-degree is bounded [Chickering et al., 1994]. Exact approaches
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explore the super-exponential search space of all possible directed acyclic graphs (DAG) over

a given set of variables [Robinson, 1973]. While in recent works [Ott et al.] the run-time has

been reduced to exponential, the memory requirement also grows exponentially in the number

of variables. This is often a serious bottleneck, even for modest problem sizes involving few

tens of variables. This has prompted the development of heuristic approaches, which remains

an active area of research [Chen et al., 2006, Cheng, 2002, Chickering, 2002, Friedman et al.,

Heckerman et al., 1995a, Moore and Wong, 2003, Pe’er et al., 2006, Spirtes et al., 2001, Spirtes

and Meek, 1995, Tsamardinos et al., 2006, Wang et al., 2007].

Most heuristic approaches for BN structure learning can be characterized as either constraint-

based, or based on score optimization, or hybrid approaches that include aspects of both. In

constraint-based approaches, conditional independencies between variables are evaluated us-

ing statistical tests (G2, partial correlation, etc.) and propagated, using a graphical criterion

called d-separation, to infer a partially oriented network. Then, axioms are used to orient the

remaining edges such that all constraints are satisfied [Spirtes et al., 2001, Cheng, 2002]. These

methods have produced mixed results, due largely to the sensitivity of the statistical tests to

noise in the data.

Score optimization methods optimize a scoring criterion while exploring the search space [Fried-

man et al., Moore and Wong, 2003, Cooper and Herskovits, 1992, Teyssier and Koller, 2005].

The scoring criterion evaluates how well a proposed graph predicts dependencies in the ob-

served data. Commonly, a classic hill-climbing technique over the search-space of DAGs is

employed. At each step, every possible edge addition, removal, and reversal is evaluated under

the acyclicity constraint, and a step is made towards the highest scoring change. These steps

are repeated until the overall network score can no longer be improved. This classic idea has
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been enhanced by adding TABU lists and random restarts to avoid local optima. A novel

operator has also been proposed, which allows for the reinsertion of a particular node in a

new location in the graph [Moore and Wong, 2003]. Variations of this stream of approaches

over DAGs have been proposed, where considerations over orders are made [Cooper and Her-

skovits, 1992, Teyssier and Koller, 2005]. These methods explore reductions in search space

imposed by a topological sort on a DAG. Alternatively, relaxing the acyclicity constraint has

been proposed, which allows for the computation of optimal set of neighboring nodes (both

incoming and outgoing edges). Then, edges are removed to break cycles and to eventually

restore the acyclicity constraint, such that the overall network score is optimized [Peng and

Ding, 2003]. Reductions in search space have been proposed by pre-selecting subsets of vari-

ables for each node. One way to do this is to use constraint-based approach and eliminate

edges between conditionally independent variables. Such methods are sometimes referred to

as hybrid methods [Tsamardinos et al., 2006].

An extensive evaluation of the performance of several state-of-the-art algorithms, represent-

ing each of the three categories described above, including the Sparse Candidate [Friedman

et al.], Three Phase Dependency Analysis [Cheng, 2002], Optimal Reinsertion [Moore and

Wong, 2003], Greedy Equivalence Search [Chickering, 2002], PC [Spirtes et al., 2001], and

Max-Min Hill Climbing (MMHC) [Tsamardinos et al., 2006] algorithms, highlighted MMHC

as the most accurate approach and scalable to large datasets [Tsamardinos et al., 2006]. Even

though the presented method is relatively fast in determining the skeleton network, it is re-

ported to take about 19 hours for a domain of approximately 5, 000 variables and an additional

13 days to orient its edges [Tsamardinos et al., 2006]. This category of approaches is generally

considered a promising direction.
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MMHC uses heuristic procedures to pre-compute the set of parents and children (PC)

of each variable. Then, it optimizes the overall network score by selecting parents for each

variable from its respective PC, using hill-climbing.

In stark contrast to the vast literature on serial algorithms for BN structure learning, and

despite the compute and memory intensive nature of the problem, there is limited work in

the development of parallel methods for structure learning. In 2009, Nikolova et al. [Nikolova

et al., 2009] developed the first parallel algorithm for exact BN structure learning that is both

work and space optimal. While this work allows pushing the limits on the scale of networks

that can be inferred with precision, the NP-hard nature of the problem limits the applicability

of this solution to small networks of 30-40 nodes. Heuristics based approaches that trade off

optimality for the ability to learn larger networks are the only means to structure learning of

large-scale BNs. While many score optimization and hybrid heuristic approaches that yield

good quality results have been reported, there is little work in developing efficient parallel

counterparts to these algorithms. Some works have resorted to simplistic parallelization of

such approaches which may adversely affect quality. For example, Tamada et al. [Tamada

et al., 2011] build whole-genome scale networks by selecting a random subset of nodes on

which a serial method can be run, and exploiting parallelism by conducting many such runs

with multiple random subsets. The results of these runs are subsequently combined to form

the larger network. While the quality of the network improves with the number of random

samples, the true parents of any given node may not be simultaneously part of any one of the

subsets considered.
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4.2 Phase 1: Parallel Discovery of Direct Causal Relations and Markov

Boundaries with Applications to Gene Networks

In this section, we present parallel algorithms for two problems that arise in relation with

network structure learning and analysis: (i) the discovery of candidate parents for each variable

(the set of parents and children of each node in the corresponding Bayesian network), and (ii)

the computation of Markov boundary of each variable, defined as the minimal set of variables

that shield the target variable from all other variables in the domain. Our parallel algorithms

are based on state-of-the art constraint-based heuristic optimization methods. They are shown

to be work-optimal and communication efficient, and exhibit nearly perfect scaling.

4.2.0.2 Contributions

Our goal is to push BN structure learning towards ever larger domains to facilitate applica-

tions such as whole-genome network inference. We present parallel algorithms for direct causal

relations inference, which corresponds to the discovery of the parents and children (PC) nodes

for each variable in the network.

We then consider the problem of inferring Markov boundaries (MB). The MB of a given

variable is defined as a minimal set of nodes which shield the particular variable from all other

variables in the domain. While computingMBs by itself is of great interest in bioinformatics, as

it has various implications for feature selection in network analysis, knowing MBs in addition

to PCs introduces new constraints which can reduce the search space in the optimization

step (for edge orientation) towards the full BN discovery. A recent study reported over 2 hours

time for determining a Markov boundary of a single variable over a domain of 139,351 variables

[Pena et al., 2007]. At this rate, computing the Markov boundaries for all variables would take
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an estimated 32 years.

4.2.1 Direct Causal Relations (PC) and Markov Boundaries (MB) Learning

We next review two state-of-the-art serial algorithms for PC and MB discovery, which

form the basis of our parallelization. The first algorithm, named MMPC (Max-Min Par-

ents and Children) [Tsamardinos et al., 2006], identifies the set of parents and children for a

given target variable. The second algorithm is our modification of the PCMB (Parents and

Children based Markov Boundary algorithm) [Pena et al., 2007]. We refer to the modified

PCMB algorithm as PCMB∗. Under the assumptions that the set of observations D is an

independent and identically distributed sample from the probability distribution P and that

the tests of conditional independence and measures of conditional dependence are correct, the

outputs of MMPC and PCMB are PC(T ) and MB(T ) for the DAG faithful to P (proofs in

[Tsamardinos et al., 2006] and [Pena et al., 2007], respectively).

1. {Phase 1: Forward}
2. CPC← ø

3. repeat

4. 〈F, assocF 〉 = MaxMinHeuristic(T ; CPC)

5. if assocF 6= 0 then

6. CPC = CPC ∪ F
7. end if

8. until CPC does not change

9. {Phase 2: Backward}
10. for all X ∈ CPC do

11. if X ⊥⊥ T |Z for some Z ⊆ CPC then

12. CPC = CPC\{X}
13. end if

14. end for

15. return CPC
Algorithm 1: MMPC(T,D)
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1. Procedure MaxMinHeuristic(T,CPC)

2. assocF = max
X∈X\(CPC∪{T})

MinAssoc(X;T |CPC)

3. F = argmax
X∈X

MinAssoc(X;T |CPC)

4. return 〈F, assocF 〉

1. CPC = MMPC(T,D)

2. for all X ∈ CPC do

3. if T /∈MMPC(X,D) then

4. CPC = CPC\{X}
5. end if

6. end for

7. return CPC
Algorithm 2: MMPC(T,D)

4.2.1.1 MMPC

MMPC receives a target variable T and a set of observations D as input and returns

PC(T ). It proceeds in two stages as outlined in Algorithms 1 and 2. First, procedure MMPC

identifies a superset of PC which may potentially contain false positives. In phase 1, MMPC

repeatedly uses the MaxMinHeuristic to continually add the next most probable variable to

include in the candidate PC set called CPC. In phase 2, MMPC conditions on all possible

subsets of CPC to remove some false positives which may have been added to CPC in phase

1. Finally, MMPC iterates over the results of MMPC enforcing the symmetry properties of

the PC set, to further eliminate false positives that could occur due to conditioning only on

subsets of CPC. The MaxMinHeuristic uses procedure MinAssoc to compute the minimum

association between two variables T and X given a subset Z, which is defined as the minimum

association between the two variables conditioned on every possible subset of Z:

Definition 4.1

MinAssoc(X;T |Z) = min
S⊆Z

Assoc(X;T |S).
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Time complexity is estimated in the number of computed independence tests. In the worst

case, phases 1 and 2 of MMPC are bounded by O(|X | · 2|CPC|) and O(|CPC| · 2|CPC|−1),

respectively. Due to sample size limitations in statistically reliable independence testing with

real data, as described in [Spirtes et al., 2001], conditioning is only possible on subsets of size

up to l, which results in time complexity O(|X | · |CPC|l+1). Furthermore, the sizes of the

larger CPC sets found at the end of phase 1 by MMPC are claimed to be of the same order

as the sizes of the corresponding final CPC = PC sets produced by the algorithm. With this

expectation, the total computational complexity of running MMPC for all variables in X is

estimated as O(|X |2 · |PC|l+1), where PC is the largest set of parents and children over all

variables in X .

4.2.1.2 PCMB∗

Once the PCs are identified, we proceed to find the MBs. The PCMB algorithm in [Pena

et al., 2007] utilizes a different procedure for first learning PC sets. We replace this procedure

with MMPC and arrive at the modified PCMB∗ algorithm outlined in Algorithm 3. PCMB∗

receives a target variable T and a set of observations D as input and returns MB(T ). It first

sets MB(T ) to PC(T ) as returned by MMPC. Then, the remaining parents of T ’s children

(the so called spouses) are added. Since MMPC would have already identified the set Z that

d-separates X and T at line 6 in Algorithm 3, the worst case complexity of PCMB∗ over all

variables in X is O(|X |·|PC|2).

4.2.1.3 Conditional Independence Tests and Association Measures

To test whether Xi ⊥⊥ Xj |Xk, and to assess the strength of association between Xi and Xj

conditioned on Xk when independence does not hold, the G2 statistic is used [Spirtes et al.,
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1. MB = PC = MMPC(T,D)

2. for all Y ∈ PC do

3. for all X ∈MMPC(Y,D) do

4. if X /∈ PC then

5. find Z : X ⊥⊥ T |Z and X,T /∈ Z

6. if X ⊥⊥ T |Z ∪ {Y } then

7. MB = MB ∪ {X}
8. end if

9. end if

10. end for

11. end for

12. return MB
Algorithm 3: PCMB∗(T,D)

2001]. Adopting the notation from Tsamardinos et al., [Tsamardinos et al., 2006], let Sabcijk be

the count of occurrences in the data where Xi = a, Xj = b, and Xk = c. Then

G2 = 2
∑
a,b,c

Sabcijk · ln
Sabcijk S

c
k

Sacik S
bc
jk

,

with corresponding degrees of freedom given by

(ri − 1) · (rj − 1) ·
∏

Xl∈Xk

rl,

where ri is the size of the domain (number of distinct values) of variable Xi. The G2 statistic

is computed under the null hypothesis of independence. The G2 statistic is asymptotically

distributed as χ2. If the null hypothesis is rejected, which is interpreted as Xi 6⊥⊥ Xj |Xk,

then the negative p-value of the test is used as an approximation of the measure of association

between Xi and Xj conditioned on Xk. Otherwise, the variables Xi and Xj are considered

conditionally independent, which is equivalent to an association measure of 0.

In the following two sections, we present parallel algorithms for computing causal relations

and Markov boundaries. While based on the sequential algorithms reviewed in the previous
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section, we do not always directly adhere to the specific flow of these algorithms as it would be

counterproductive to efficient parallelization. However, the algorithms are logically equivalent

and produce identical results.

4.2.2 Parallel Direct Causal Relations (PC) Discovery

4.2.2.1 Algorithm

The sequential algorithm calls MMPC for each variable in |X |, the first step of which is

a call to MMPC. In the parallel algorithm, we first compute MMPC for all the variables

collectively in parallel. This component is straightforward. Initially, all |X | variables are evenly

distributed across p processors. Each processor is responsible for computing the CPCs of its

designated variables. As mentioned previously, in phase 1 these sets are built up incrementally

by adding one element at a time, while in phase 2 some of the false positives are removed.

Note that the CPC set sizes are not uniform across all variables either at the end of phase 1

or at the end of phase 2. However, we found that an equal allocation of variables to processors

is sufficient to ensure good load balancing at this stage. In addition, we suggest a way to

reuse computations in phase 1 for speedy execution of phase 2, which is possible if a variable

is allocated to the same processor for both phases.

In order to compute the MaxMinHeuristic efficiently, we restate Definition 1 in a Dy-

namic Programming (DP) formulation, i.e.:

MinAssoc(X;T |Z) = min


Assoc(X;T |Z)

min
∀Y ∈Z

MinAssoc(X;T |Z\{Y })
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In phase 1, all processors first compute their expanded CPC’s for each of their local variables.

We save previous calls to MinAssoc in memory, and reuse them as needed in phase 2. The

DP formulation and preserved locality allow for more efficient independence testing in both

phases 1 and 2. To check if any subset Z ⊆ CPC exists that d-separates X and T (line 11 in

algorithm 1), it is sufficient to determine if MinAssoc(X;T |CPC) = 0. Thus, if any of the

subsequent calls to MinAssoc conditioned on subsets of CPC have already been computed,

these results are reused.

The remaining part of MMPC is to perform symmetry testing: X ∈ CPC(Y ) is removed

from CPC(Y ) whenever Y /∈ CPC(X). The sequential algorithm performs this test for each

CPC set, and for each variable within that set. We perform this set reduction simultaneously

in parallel on all sets as follows. We first transform each CPC set to a doubly redundant list of

pairs representation. Let Y denote a variable assigned to a processor, and let X ∈ CPC(Y ).

We form two pairs (X,Y ) and (Y,X). Thus on each processor we form the list consisting of all

such pairs generated for all of its local |X |/p variables and their respective non-empty CPC

sets. A parallel sort is then used to sort all the pairs so generated using the first variable in

the pair as primary key and the second variable as the secondary key.

If X ∈ PC(Y ) then the pairs (X,Y ) and (Y,X) would have been generated on the processor

to which X was originally distributed. Analogously, if Y ∈ PC(X) then the same pairs would

have been generated on Y ’s processor. After sorting, both sets of duplicates will appear

adjacent. If Y /∈ PC(X), then the pairs (X,Y ) and (Y,X) will occur only once in the sorted

list. Each processor scans its local portion of the globally sorted list of pairs to remove pairs

which occur exactly once, and retain a single copy of those pairs which occur twice. This

duplicate check effectively implements lines 3-4 in algorithm MMPC. The special case of two
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consecutive duplicated pairs split across neighboring processors can be easily taken care of by

communicating the first element of each processor to the processor with previous rank. At the

end of this stage, we have a list of pairs representation of the PC set of each variable.

4.2.2.2 Run-Time Complexity

Aside from the initial computations that each processor performs on its designated block of

data of size |X |/p, the parallel PC algorithm is based on parallel sort. Initially each processor

receives |X |/p variables and in MMPC proceeds to compute their CPCs. As made in the serial

algorithm and verified experimentally, we make the assumption that the work for determining

any CPC set is of the same order as the largest PC set. The complexity of parallel execution

of MMPC is bounded by the run-time per processor for phases 1 and 2, i.e., O
(
|X |·|PC|l+1

p

)
,

which is work-optimal. In MMPC a total of 2 · |X |p · |PC| mirror CPC-pairs are generated on

each processor and parallel sort is invoked on a total number 2|X | · |PC| pairs. This concludes

the PC discovery for all variables. The total run-time is expected to be dominated by the first

phase due to exponential dependence on l.

4.2.3 Parallel Markov Boundaries (MB) Discovery

4.2.3.1 Algorithm

The sequential algorithm calls PCMB∗ for each variable T in X . It includes PC(T ) and

proceeds to examine all candidate spouses X of T , i.e. X ∈ PC(Y ) for Y ∈ PC(T ). It

then retrieves the set Z which was previously found by a call to MinAssoc, and therefore

has already been recorded, to test for independence between the candidate spouse X and T

given the union of set Z and the hypothetical child Y of X and T . Sequentially, the candidate

spouses are determined in two nested for-loops (lines 2-4). We find all candidate spouses X
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of all variables T in X simultaneously in parallel as follows.

We continue to utilize the pair-list representation introduced in section IV and consider

the output of the parallel PC procedure. Each processor now stores a sorted list of PC pairs,

where a pair (X,Y ) is present if X ∈ PC(Y ) and Y ∈ PC(X). Implementing the candidate

spouse check in pair-representation of PC sets is equivalent to checking whether, for any two

pairs (T, Y ) and (Y,X) in the list, the pair (X,T ) is also present. Once all such spouse pairs

are identified, they are returned to the processors which would have already computed their

respective set Z for the final independence test. We describe this procedure in detail in five

steps below.

Spouse-pairs Generation Each processor parses its local list of pairs to find all pairs with

the same primary key. The lists are sorted and therefore all such pairs occur consecutively.

For any two pairs with the same primary key a third pair is generated from the remaining

two non-shared variables. This third pair is in effect a candidate spouse-pair. The order of

the variables within any spouse-pair is irrelevant. Recall that for any two variables X and Y

s.t. X ∈ PC(Y ) both pairs (X,Y ) and (Y,X) were generated by the PC procedure. This

ensures that checking only the primary key for candidate-spouse-pair generation is sufficient.

The reason for doing so is to ensure that all pairs which can potentially be used to generate

spouse-pair occur consecutively to maximize locality. Parsing proceeds starting with the first

pair on the list and comparing it to each of the following pairs until the primary keys are no

longer the same. In some cases, a sequence of pairs with a common primary key can be split

between processors, i.e. some pairs may have a common primary key with the last pair on a

given processor. In those cases, all such pairs are communicated to the neighbor processor of

higher rank, in order to continue the process of candidate spouse-pair generation. One last
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detail of this procedure is to record the primary key of the two generating pairs for each newly

created candidate spouse-pair. We refer to this key as generator and we will return to it in

the last step of this algorithm.

Mixing of Spouse-pairs and PC Pairs and Re-sorting Once all possible spouse-pairs are

created and their corresponding generators recorded, these pairs are marked and mixed with

the original PC pairs. A global parallel sort is invoked again to re-sort the new list of all pairs.

Search and Retention of Singly-occurring Spouse-pairs After sorting, duplicate pairs

occur adjacently. The presence of two duplicate pairs implies that the generated candidate

spouse-pair is already present in the PC list, i.e., that X ∈ PC(T ) (line 4 in PCMB∗). We

are interested in the case when X /∈ PC(T ), and therefore are looking for pairs which occur

only once. Once all such pairs are identified and retained, others are removed from the list.

Distribution of Retained Spouse-pairs to Designated Processors Proceeding with

the final independence testing requires that each candidate spouse-pair be delivered to the

processor which had originally d-separated X and T and thus computed the set Z. Clearly,

this was done by the processors to which variables X and T were originally distributed. Thus,

it suffices to deliver each spouse-pair to one of these two processors.

Computation of Markov Boundaries Once each processor receives its designated spouse-

pairs, procedure Compute Markov Boundaries outlined in Algorithm 4 takes place. This pro-

cedure returns partial MBs for each spouse-pair. Since MBs are also symmetrical [Neapolitan,

2003], namely if X ∈ MB(Y ) then Y ∈ MB(X), the partial MB(X,T ) is recorded for the

pair. For each variable T , complete MB(T ) is acquired by taking the union of all such partial

MBs where the variable T is present, in addition to PC(T ). Recall that in this setting the

spouse-pair (X,T ) is such that there exists Y : Y ∈ PC(T ), X ∈ PC(Y ), while Y is also
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the generator variable. Once set Z is obtained, pair (X,T ) is added to the partial MB list if

Assoc(X;T |Z ∪ Y ) returns 0.

1. MP ← {received spouse-pairs}
2. for all (T,X) ∈MP do

3. find Z : T ⊥⊥ X|Z and T,X /∈ Z

4. if T ⊥⊥ X|Z ∪ {generator(T,X)} then

5. MBT,X = MBT,X ∪ {generator(T,X)}
6. end if

7. end for
Algorithm 4: Compute Markov Boundaries

4.2.3.2 Run-time Complexity

Spouse-pairs Generation In order to generate spouse-pairs all mirror PC pairs are exam-

ined. Each variable X participates in creating exactly 2 · |PC(X)| mirror PC pairs. It can

therefore be a generator for spouse-pairs at most
(|PC(X)|

2

)
times. Having mirror PC pairs

does not double the run-time of this stage. This is because spouse-pairs are only generated

when the first variable of the two pairs which are being compared are the same. Hence, a given

variable could only serve as a generator when it is in the first position of a PC mirror pair.

This results in overall compute work of O
((|PC|

2

)
· |X |p

)
. In boundary cases when some pairs

need to be sent to the adjacent processor the cost of communication is added but negligible.

This communication cannot be overlapped with computation because it is followed by a global

sorting procedure on all spouse-pairs so generated and previously recorded PC pairs.

Mixing of Spouse-pairs and PC Pairs and Re-sorting After mixing the mirror PC

pairs and all generated spouse-pairs, the number of pairs per variable is bounded by q′ =

2|PC|+
(|PC|

2

)
. These pairs are sorted using a parallel sort.

Search and Retention of Singly-occurring Spouse-pairs Checking for duplicates requires

the local list of sorted pairs on each processor to be scanned once, which requires linear time
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in the size of the local list. Under the assumption that the resulting local lists of sorted pairs

are of approximately equivalent size, this operation is bounded by O
(
q′ · |X |p

)
.

Distribution of Retained Spouse-pairs to Designated Processors An All-to-all com-

munication is used to deliver the lists of retained spouse-pairs to their respective destinations.

In terms of complexity, the parallel sorting needed for many of the steps of the algorithm

dominates this step (as all-to-all communication is a lower bound for parallel sorting).

Computation of Markov Boundaries In this stage each processor retrieves one locally

stored result of a call to MinAssoc and makes at most one call to Assoc. Since complexity

of the call to the independence test function is taken as constant, this operation is linear

in the size of the local list of retained spouse-pairs. The sizes of these lists are difficult to

compute precisely, but under the assumption that each processor receives approximately the

same number of spouse-pairs, the cost of this step is balanced.

Overall, the parallel algorithm for computation of all Markov boundaries relies on parallel

sorting as the dominant component of the run-time. The largest size of the data sorted is

O(|X | · |PC|2). Our implementation relies on Sample sort.

4.2.4 Experimental Results

The presented algorithms were implemented in C++ and MPI. To assess the performance

and applicability of the algorithms experiments were performed on up to 255 16-way SMP

compute nodes, totaling 4,080 AMD Opteron processors of the TACC Ranger system (core

frequency of 2.3 GHz and 32 GB of memory per node). As described in the previous sec-

tion, parallel sort is the most communication-intensive operation used in the algorithms. The

remaining work is the dominant part, consisting of well balanced local computations with

negligible communication at the boundaries. Therefore, one would expect good scaling. For
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the purpose of demonstrating scalability we first present results from two experiments on

medium-size datasets, where we analyze how the number of input variables and sample size

affect performance. Then we demonstrate the applicability of our methods to real-world prob-

lems by learning the PCs and MBs for a whole-genome unoriented BN of the model plant

Arabidopsis thaliana.

Following the practice used in Spirtes et al., Tsamardinos et al., and Pena et al., we

implement the G2 statistic as a measure for association strength. We adopt the same sample

size requirements for reliable independence test assessment. That is, for any independence

test to be considered reliable, at least five observations on average per estimated parameter

are required [Spirtes et al., 2001]. The assessment of the correctness of the inferred results is

beyond the scope of this paper, as it varies with respect to the independence testing criteria,

assumptions about statistical tests reliability and other parameters.

4.2.4.1 Data Preparation

A total of 3, 546 non-redundant Affymetrix expression profiles for Arabidopsis thaliana were

collected from the NASCArray [NAS, 2009], AtGenExpress [TAI, 2009], ArrayExpress [Arr,

2009], and GEO [GEO, 2009] repositories and pre-processed as described in [Zola et al., 2010].

This resulted in a data-matrix of 3, 137 observations and 15, 596 probe-sets, mapping to 15, 495

genes. We refer to this dataset as whole-genome dataset. In addition, to assess the performance

and scalability of the presented parallel algorithms we created three medium-scale datasets,

each consisting of 1, 000 genes and 500 observations, 3, 000 genes and 250 observations, and

3, 000 genes and 500 observations, respectively. These datasets were obtained by selecting

subsets and subsamples of the whole-genome dataset.

The values for each variable are the gene expression levels detected by microarray exper-
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Table 4.1 Total run-time for the computation of PC+MB for the dataset
with m = 500 observations and varying number of genes denoted
by n.

No. of Time [s]

CPU cores n = 1, 000 n = 3, 000

16 173 3,105

32 90 1,594

64 46 805

128 24 413

256 15 209

512 9 108

iments, which are continuous. We represent gene expression using a multinomial model, i.e.

we treat each variable as discrete and learn a multinomial distribution describing the proba-

bility of each state of a given variable given the state of its parents. After the normalization

performed in [Zola et al., 2010], we discretized the data using the average expression value

of each gene across experiments as control in a similar manner as in [Friedman et al., 2000].

The multinomial model allows for the detection of combinatorial effects, e.g. that a given gene

may be expressed only if a set of other genes are jointly expressed, as opposed to not being

expressed if even one of the genes in this set is not expressed.

4.2.4.2 Performance Analysis for Varying Number of Variables

In the first experiment we analyzed the performance of the algorithms with respect to the

number of input variables. We tested the algorithms on the datasets with n = 1, 000 and

n = 3, 000 genes, and a fixed m = 500 number of observations. The run-time as a function

of the number of processor cores used are shown in Table 4.1. The same data is plotted in

Figure 4.1 to show relative speedup when compared to a 16-core run. These results were

generated using the standard significance level cutoff of 0.001.
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Figure 4.1 Relative speedup when compared to a 16-core run for the
dataset with m = 500 observations and varying number of genes
denoted by n.
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Figure 4.2 Relative speedup when compared to a 16-core run for the
dataset with n = 3, 000 genes and varying number of obser-
vations denoted by m.

As can be seen, for the larger dataset (n = 3, 000) linear scaling is observed up to 512

cores, while in the case of the smaller dataset (n = 1, 000) the performance gains are tempered

for more than 128 cores. This can be explained by the much smaller grain-size at 512 cores,

which in this case translates to a meager 1-2 variables per processor. Thus, the parallel

algorithm works efficiently even for a rather small grain-size of 5-6 variables per processor. For

large problems involving over 100,000 variables, this permits utilization of over ten thousand

processors.
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Table 4.2 Total run-time for the computation of PC+MB for the dataset
with n = 3, 000 genes and varying number of observations de-
noted by m.

No. of Time [s]

CPU cores m = 250 m = 500

16 1,530 3,105

32 781 1,594

64 396 805

128 205 413

256 104 209

512 54 108

4.2.4.3 Performance Analysis for Varying Number of Observations

In the second experiment, we examined how the number of observations affects the scal-

ability of our algorithms. The run-time as a function of the number of processor cores used

are shown in Table 4.2. The same data is plotted in Figure 4.2 to show relative speedup

when compared to a 16-core run. Similarly, these results were generated using the standard

significance level cutoff of 0.001.

We evaluated the performance of our algorithms using two datasets with a fixed number

of genes n = 3, 000 and a varying number of observations m = 250 and m = 500, respectively.

In order to compute each association measure (in our case equivalent to computing the G2-

statistic), the n-by-m input data-matrix is scanned. Thus, a smaller number of observations

yields lower computational complexity, while leaving the communication complexity unaffected.

This could potentially limit scalability. The results in Table 4.2 indicate that for a fixed number

of variables, the run-time increases linearly as the number of observations increases, and as

can be seen from Figure 4.2, the relative speedup remains nearly linear on up to 512 cores for

both datasets.
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Table 4.3 Run-times for the parallel inference of PCs and MBs on a
genome scale Arabidopsis thaliana data set.

Phase Time [s]

MMPC Phase 1 6,838

MMPC Phase 2 0.45

Rest of MMPC 2,505

Total time for PCs 9,344

Total time for MBs 3.71

Total time for PCs + MBs 9,347

4.2.4.4 Whole-genome BN Structure Learning

We demonstrate the applicability of our methods to a real-world problem by learning the

whole-genome skeleton network of the model plant Arabidopsis thaliana. Using the whole-

genome dataset, the full set of PCs and MBs were inferred on 255 nodes totaling 4, 080

cores. The results are summarized in Table 4.3. As expected, the most time-consuming

part corresponded to phase 1 in the MMPC algorithm. The second phase took negligible

time indicating there were few false positives that were removed during this stage. It also

reflects the power of storing and reusing the MinAssoc computations. Computing MBs took

negligible additional time, once the PC sets were computed. Our implementation allowed for

the inference of the whole-genome skeleton BN in approximately 2 hours and 40 minutes.

4.3 Phase 2: Parallel Structure Learning for Large Scale Bayesian

Networks

4.3.0.5 Contributions

In this section, we present a parallel approach to build large-scale BNs that combines a

heuristic framework for scaling with the precision of exact learning. In this approach, we first
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identify the set of candidate parents for each node in the network with the goal that the set

so identified is a superset of the true parents (for subsequent correctness) and is as small as

possible (for computational efficiency). Taking these sets as basis, we develop a parallel exact

algorithm for collectively inferring the true parents of each node in the network. We expect that

the resulting network should be of higher quality due to the utilization of the exact algorithm

in refining the candidate parents sets. Nevertheless, no algorithm can guarantee optimality of

the network. Sources of error in this approach include non-inclusion of actual parents in the

candidate parent sets and how faithfully the scoring function models the interactions. As a

result, the network derived by inferring the parent sets may contain cycles. We augment this

with a parallel algorithm to detect and break cycles to result in a DAG that is returned as

the inferred structure. We apply the presented approach to reconstruct gene networks of the

model plant organism Arabidopsis thaliana.

4.3.1 Problem Statement and the Proposed Approach

Given a set X of n variables and a fully-observed data matrix Dn×m we wish to find the

DAG N such that it optimizes a scoring function Score(N) 1.2.2. Our work draws upon the

two stage algorithm presented by Peng et al. [Peng and Ding, 2003], which is reported to

produce results comparable to or better than other large-scale BN learning tools. However, it

is not a direct parallelization of this work and employs a very different strategy for the first

stage in order to inject an optimal exact structure learning algorithm for improving quality,

while developing a parallelization of the second stage. We briefly review Peng et al.’s sequential

algorithm next.
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4.3.1.1 Overview of the Sequential Approach

In this approach, structure learning is carried out by independently finding the locally

optimal parents set for each node in the network. The network is inferred by combining the

results from this stage for all nodes in the network. The resulting network is not necessarily a

DAG and may contain cycles. In the second stage, cycles are broken until the graph becomes

acyclic while the score of the overall network is maximized.

Finding Locally Optimal Parents To pre-compute a set of locally-optimal parents for each

variable in the network, a simple incremental routine is employed. The parents set of each

node is initialized to the empty set. In each iteration, the next single best parent for a given

node is added to the current parents set. The search continues until the overall score of the

variable given its parents s(X,Pa(X)) can no longer be improved.

Minimal Score-loss Cycle Elimination Precomputing locally optimal parents as described

above may result in a network containing cycles. To eliminate a simple cycle, it is sufficient to

remove any of the edges in the cycle. The removal of any given edge (Xi, Xj) is equivalent to

removing node Xi from the parents set of Xj . The score-loss function δij provides an estimate

of the reduction in score, which may result from this change:

δij = s(Xj , Pa(Xj))− s(Xj , Pa(Xj)\{Xi}).

In simple cycles, the edge with smallest score loss is removed. In nested cycles, removing an

edge shared by multiple cycles could break more than one cycle. Thus, in the presence of

nested cycles the edge shared by most cycles is first identified. Then the score loss of this

edge is compared to the sum of smallest score loss edges in each of the participating cycles. If

the score loss resulting from the removal of the most shared edge is minimal, then this edge
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is removed and the remaining cycles are re-valuated in a similar manner. Otherwise, in each

cycle the edge with the smallest score loss is removed.

Short-Cycle-First Heuristic: We next comment on how and in what order cycles of differ-

ent lengths are detected. Cycles in a given graph can be identified by exponentiation of its

adjacency matrix. If Mn×n is the adjacency matrix of graph G over n variables and the trace

of M q
n×n is not 0, then G contains cycles of length q. Peng et al. [Peng and Ding, 2003] make

the observation that when cycles of different lengths are present, breaking short cycles first

is more efficient than longer ones, as this results in a higher probability that more than one

cycles are eliminated this way. Thus they identify cycles efficiently by exponentiation of the

adjacency matrix from lowest to highest power.

After cycles are detected, they can be easily identified using depth first search. The mul-

tiplicity of each variable (the value in the main diagonal in M q
n×n for each node) indicates the

number of cycles in which the node participates and is used for the identification of the most

shared edge in minimal score-loss cycle elimination.

4.3.2 Overview of the Parallel Approach

While we follow the overall framework of Peng et al. [Peng and Ding, 2003], we propose a

different strategy for the first stage to more accurately determine the locally optimal parents of

each node. This is carried out in two steps. Let n denote the number of variables/nodes in the

BN. In the first step, we compute the candidate parent set of each node in the network. The

goal here is to reduce the size of each candidate parent set from the maximum possible n− 1

to as small a size as possible, without running into the risk of omitting a legitimate parent.

This can be achieved using a variety of algorithms. For instance, Nikolova et al. [Nikolova

and Aluru, 2011] present a parallel algorithm to compute candidate parent sets based on the
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MMPC algorithm [Tsamardinos et al., 2006]. This fits well with the proposed approach as the

entire framework will then run in parallel.

In other cases, there may be domain-specific strategies for identifying candidate parent

sets. For example, the specific application of interest in our work is to infer gene regulatory

networks. For this problem, it is natural to identify candidate parent sets based on pairwise

correlations – if two genes are co-expressed as per a correlation measure, then each gene is put

in the candidate parent set of the other. Correlations can be computed using multiple measures

such as Pearson correlation, Spearman correlation, etc. In this work, we use the more rigorous

parallel information-theoretic approach proposed by Zola et al. [Zola et al., 2010], that uses

pairwise mutual information to detect nonlinear interactions, removes indirect interactions to

further reduce candidate parent set sizes, and carries out permutation testing to ascertain the

validity of predicted interactions.

The parallel network structure learning algorithm proposed in this work starts off with the

candidate parents sets as input, obtained through one of the means explained above or another

such method. The key contribution we make is to develop a parallel exact method to determine

the locally optimal parents, and a parallel method to break cycles from the resulting network

so obtained. We expect that the exact algorithm, which exhaustively evaluates all subsets of

each candidate parents set, will yield a superior quality network.

In case of large networks, the sizes of some of the pre-computed candidate parents sets may

be too large for the exact algorithm. In case of gene regulatory networks, it is highly likely that

a gene with large node degree is a regulatory element that influences many other genes (hence

the parent), and it is very unlikely that the expression of a gene is influenced by a large number

genes. Hence, we compute locally optimal parents sets for all nodes whose candidate parents
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sets do not exceed a threshold value, determined by the capability of the exact algorithm. For

a node Xi whose candidate parents set size exceeds this threshold, we remove those nodes Xj

which are already evaluated by the exact algorithm and the result affirms Xi is a parent of

Xj . Thus, by eliminating children of Xi from its candidate parents set, we hope to reduce the

size of this set to below the threshold required for the exact method. This procedure works

because children of a node are often included in the candidate parents set of a node, due to

the inability to distinguish between parents and children at this stage of the algorithm. For

example, a correlation measure used to measure co-expression will infer an indirected network

that is unable to differentiate between the parents and children of a node.

For the second stage of cycle removal, we propose a parallel method to carry out the cycle

identification procedure by matrix exponentiation in short-cycle-first manner. Identified cycles

are then resolved using the minimal score-loss criterion. The subsequent sections describe in

detail our parallel algorithm.

4.3.3 Parallel Discovery of Locally Optimal Parents

We first present a parallel algorithm to compute the set of locally optimal parents for a

single variable. Next, we demonstrate that it is advantageous to compute sets of locally optimal

parents simultaneously for multiple variables. Finally, we present a scheduling scheme to pool

together multiple variables and compute their locally optimal parents sets simultaneously.

4.3.3.1 Optimal Parents Set for a Single Variable

Let CP (Xi) ⊂ X be the candidate parents set for the variable Xi, and A ⊆ CP (Xi). Using

Dn×m, a scoring function s(Xi, A) determines the score of choosing A to be the set of parents

for Xi; or equivalently, s(Xi, A) specifies how well A predicts Xi given Dn×m. The computation
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of function s chosen from the most common scoring functions (BDe, MDL) requires O (n ·m)

time.

Definition 4.2 Let CP (Xi) be the candidate parents set of Xi and A ⊆ CP (Xi). Let F (Xi, A)

denote the highest possible score that can be obtained by choosing parents of Xi from A; i.e.,

F (Xi, A) = max
B⊆A

s(Xi, B).

A set B which maximizes the above equation is an optimal parents set for Xi (OP (Xi)) from

the candidate parents subset A. While F (Xi, A) can be computed by directly evaluating all

2|A| subsets of A, it is advantageous to compute it based on the following recursive formulation.

For any non-empty set A,

F (Xi, A) = max


s (Xi, A)

max
Xj∈A

F (Xi, A\{Xj})

.

This formulation allows for a dynamic programming approach, which can be visualized

as operating on the lattice L formed by the partial order “set inclusion” on the power set of

CP (Xi). Let |CP (Xi)| = d. Then the lattice L is a directed graph (VL, EL), where VL = 2d

and (B,A) ∈ EL if B ⊂ A and |A| = |B| + 1. The lattice is naturally partitioned into levels,

where level l ∈ [0, d] contains all subsets of size l (see Figure 2.2).

A node A ⊆ CP (Xi) at level l has l incoming edges from nodes A\{Xj} for each Xj ∈ A,

and d− l outgoing edges to nodes A∪ {Xk} for each Xk ∈ CP (Xi)\A. Exactly one F score is

computed at node A, i.e F (Xi, A). The computed value is further used by the nodes incident to

the outgoing edges. Each level in the lattice can be computed concurrently, with data flowing
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from one level to the next.

[Nikolova et al., 2009] present an optimal parallel algorithm for the problem of exact in-

duction of optimal BN structures from data. While the memory requirements in the problem

of exact BN structure learning would be prohibitive at the scale of interest in this work, the

mapping strategy can be adapted for the problem of learning optimal parents sets. This is due

to the significant reduction in memory requirements by 1) pre-selecting sets of CPs for each

variable, and 2) relaxing the acyclicity constraint.

4.3.3.2 Run-time and Space Complexity

In [Nikolova et al., 2009] a similar subset lattice is efficiently mapped onto p = 2k processors,

where k < n. Here we omit a comprehensive review of the method in [Nikolova et al., 2009]

and instead present the differences unique to mapping the computation of a single F score. As

|PC(Xi)| = d we have a total of 2d subsets to consider. The serial complexity of computing a

single F score is given by

d∑
i=0

(i+ im) ·
(
d

i

)
= O

(
mn · 2d

)
.

In parallel, we have a total of k + 2d−k parallel steps. At each step, at least one processor

computes at least one F function, which yields O (mn) time. Thus, the parallel run-rime is

given by O
(
mn ·

(
k + 2d−k

))
. Given that the serial run time is O

(
mn · 2d

)
, optimal parallel

run-time is O
(
mn · 2d−k

)
, which is achieved by our approach when k + log k < d.

The total number of F -scores computed by the sequential algorithm is

d∑
i=0

(
d

i

)
.
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Since storing only two levels at a time is sufficient, maximum number of F -scores is stored

when i = dd2e, which using Stirling’s formula approximates to
√

2
π ·

1√
d
· 2d. In the parallel

case, the total number of F -scores to be computed is

d−k∑
i=0

(
d− k
i

)
.

As before, the maximum storage needed at the same time is given by the summation of two

consecutive terms in the above summation. Such terms are maximized when i = dd−k2 e. Then

the maximum number of elements stored per processor becomes

(
d− k
dd−k2 e

)
,

or using Stirling’s formula approximately
√

2
π ·

1√
d−k · 2

d−k. Thus, the ratio serial/parallel of

number of stored elements yields
√
d− k√
d
· 2k,

which is optimal.

4.3.3.3 Simultaneous Computation of Optimal Parents Sets for Multiple Vari-

ables

Mapping

We next note that multiple variables may have candidate parents sets of the same size.

For example, Figure 4.3 depicts the node degree distribution of candidate parents sets for

two of the data sets of: n = 250 and m = 200, and n = 500 and m = 100. During the

computation of any two OP sets, the communication, computation and local memory access
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Figure 4.3 Node degree distribution for CPs for datasets of sizes n = 250,
m = 200, and n = 500, m = 100.

patterns remain the same provided that the two candidate parents sets are of the same size.

Thus, the computation of OP sets can be carried out simultaneously for each group (bucket)

of CP sets of equal size. Therefore, all CP sets are first grouped by size. Then, all sets of size d

from a given bucket are mapped to a d-dimensional lattice as described in Section V-A, using

any 1-to-1 mapping function.

Scheduling In order to maintain optimal efficiency while computing multiple F scores simul-

taneously, the following scheduling can be utilized. Given p = 2k processors, from the run-time

analysis it follows that any number of F scores for candidate sets of size d can be computed

efficiently as long as k+ log k < d. Thus, after grouping all CP sets into buckets by size, if the

optimality condition is met, we proceed to compute this bucket of F scores on all p processors.

If the condition is not met, we select k′ such that k′ + log k′ < d and then divide p = 2k into

2k−k
′

groups of processors and proceed to compute the bucket of F scores optimally on the

smaller sub-groups of processors. Since all subsets for which F scores are being computed
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are of equal size, we have perfect balancing within each group of 2k
′

processors, as well as

between the 2k−k
′

different subgroups of processors. We note that both p and any sub-group

of processors 2k
′

are powers of 2 and thus it is guaranteed that all processors can be divided

between compute tasks.

Run-time and Space Complexity Consider computing a total of b F scores simultaneously,

each for a CP of size d. Then, both the serial and parallel run-times are increased by a factor

of b, resulting in O
(
b ·mn · 2d

)
serially and O

(
b ·mn ·

(
k + 2d−k

))
in parallel. The the parallel

algorithm retains it optimality. The key reason for pooling F computations for nodes with

CPs of same size is to save on communication costs. By pooling together computations for

b nodes, each communication size will increase by a factor of b, while the number of parallel

communications remains the same.

Similarly, both the serial and parallel space complexity increase by a factor of b, and

are given by b ·
√

2
π ·

1√
d
· 2d and b ·

√
2
π ·

1√
d−k · 2

d−k, respectively. This results in the same

serial/parallel memory consumption ratio as shown for a single variable.

4.3.4 Resolving Highly Connected Nodes

In large networks it could be the case that some nodes would have large CP sets. For

example, gene networks are usually scale-free, and thus the node degree distribution follows

the power law: P (d) = Ad−γ , where P (d) denotes the fraction of nodes with degree d and

A ∈ [2, 3] is a constant [Barabasi and Oltvai, 2004]. For such cases, we propose a parallel

technique for efficient node degree reduction.

Let dlim be the maximum node degree allowed. First, OP sets are computed for all variables

Xk ∈ X such that CP (Xk) < dlim. Next, node degree reduction for all remaining variables

Xi ∈ X such that CP (Xi) ≥ dlim is attempted. For each such variable Xi, all candidate
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parents Xj ∈ CP (Xi) are considered. If OP (Xj) has already been computed, and Xi has

been selected as one of the optimal parents Xi ∈ OP (Xj), then we deem Xj a child of Xi and

remove it from the candidate parents set CP (Xi), thus reducing |CP (Xi)| by 1.

4.3.4.1 Parallel Connectivity Reduction

Consider revising the candidate parents set CP (Xi) of variable Xi: Xj ∈ CP (Xi) is

removed from CP (Xi) if Xi ∈ OP (Xj). Serially, this check is performed for each CP set in

each remaining bucket, for each variable within that set. We note that since each processor

computes optimal parents sets for different variables, these sets are now distributed across all

nodes. A trivial parallelization would require tracking where the optimal parents set resides,

for each variable in every given CP set.

We perform this reduction for all variables and optimal parents sets simultaneously as

follows. First, we transform all OP sets computed thus far and the remaining CP sets into

pairs representation: ∀Xk ∈ OP (Xj) create a pair (Xk, Xj), where the first variable indicates

the optimal parent Xk, and the child Xj is recorded as the second variable. Such pairs are

marked as generated from an OP set. Further, ∀Xj ∈ PC (Xi) we create a pair (Xi, Xj), where

the candidate parent Xj is now the second variable, and the candidate child Xi is the first.

Such pairs are marked as generated from a CP set. The CP sets are assigned to processors

in a round-robin fashion. Every processor generates OP pairs from its local OP sets, and CP

pairs from the CP sets assigned to it. Once all pairs are generated, a global parallel sort is

invoked, using the first variable as primary key, and the second variable as secondary key.

After sorting, all duplicates will appear consecutively. Duplicate pairs (Xi, Xj), such that

each was generated by either OP or CP set, would appear only if the candidate child variable

Xi was selected as optimal parent Xi ∈ OP (Xj) for Xj . Thus, we remove all CP pairs
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for which a duplicate OP pair was available and update the remaining CP lists. The pair-

representation allows for the generation of OP and CP pairs by all processors simultaneously.

Next, new buckets are formed from the remaining CP sets and OP sets are computed as

described in 4.3.3.1.

4.3.4.2 Run-time and Space Complexity

Processors are assigned CP sets for CP -pair generation in a round-robin manner, with the

aim of evenly distributing the number of resulting CP -pairs per processor. The total number

of CP pairs is
∑dmax

d=dlim
bd · d where dmax is the highest node degree and bd is the number of

CP sets in a bucket with degree d. This number depends on the application and particular

dataset. However, as our application shows, the total number of nodes with large connectivity

is moderate (see Table 4.4). The OP sets reside on the processor with the highest rank within

its local group of 2k
′

processors. For CP sets of size d ≥ k where k = log p, the resulting

OP ’s will reside on the processor with the highest rank p− 1. The number of OP ’s is clearly

bounded by the total number of variables n. The size of OP is bounded by dlim. Parallel sort

is performed on all OP and CP pairs. In our application we use parallel sample sort.

4.3.5 Parallel Cycle Removal

The OP sets for all variables form a directed graph, which may have cycles. One way to

globally detect all cycles in a directed graph is by exponentiating its adjacency matrix. Let

Mn×n = {mij} be the adjacency matrix of the directed graph which corresponds to all optimal

parents sets. If for some power 2 ≤ q ≤ n − 1 the trace of the matrix M q
n×n 6= 0, then all

non-zero elements in the main diagonal mii 6= 0 of Mn×n participate in a cycle of length q.

The multiplicity of each node (the value of mii) corresponds to the number of paths which go
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through this node. Thus, exponentiating the adjacency matrix Mn×n to power q is sufficient

for detecting 1) if cycles of length q are present, 2) which nodes participate in cycles of length

q, and 3) how many cycles of length q pass through each of the participating nodes. Further,

a depth first search (DFS) can be used to enumerate all cycles of length q. When cycles are

detected, edges are removed following the minimal score-loss heuristic. This results in the final

acyclic network.

We exponentiate Mn×n in parallel, in a short-cycle-first manner, starting from q = 2. By

eliminating cycles in increasing cycle length order, we ensure that after breaking all cycles of

length q, no cycles of length leq are present in Mn×n. This guarantees, that we will need to

exponentiate Mn×n at most n− 2 times.

4.3.6 Repair of Optimal Parents Sets

Once all cycles are broken, we revisit the variables which parents sets have been modified

during the cycle breaking procedure. For each such variable, we re-optimize the F score within

the modified candidate parents set.

4.3.7 Experimental Results

The presented algorithms were implemented in C++ and MPI. To assess the performance

and applicability of the algorithms experiments were performed on a Cray system with two 12-

core AMD ’ManyCores’ 2.1-GHz processors and 32 GB DDR3 1333-MHz memory per node.

Each MPI process was run with 8 GB of memory. To evaluate scalability we performed

experiments on a medium-size data set of n = 500 variables and m = 100 observations.
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Table 4.4 Candidate parents sets statistics for the test data set of size
n = 500, m = 100.

Data set D500×100

Num. Edges 1,643

Max Node Degree 42

Avg Node Degree 7.9

Num. CP Sets of size ≥ 1 415

Num. CP Sets of size ≥ 25 9

4.3.7.1 Data Preparation

A total of 3, 546 non-redundant Affymetrix expression profiles for Arabidopsis thaliana were

collected from the NASCArray [NAS, 2009], AtGenExpress [TAI, 2009], ArrayExpress [Arr,

2009], and GEO [GEO, 2009] repositories and pre-processed as described in [Zola et al., 2010].

This resulted in a data-matrix of 3, 137 observations and 15, 596 probe-sets, mapping to 15, 495

genes. We created a medium-scale data set consisting of 500 genes and 100 observations by

selecting subsets of genes and subsamples.

The values for each variable are the gene expression levels detected by microarray experi-

ments, which are continuous. We represent gene expression using a multinomial model. After

the normalization performed in [Zola et al., 2010] and reviewed in 2.5.2, we discretized the data

into three levels, using the average expression value of each gene across experiments as control

in a similar manner as in [Friedman et al., 2000]. The candidate parents were pre-computed

using the parallel information-theoretic approach proposed by Zola et al. [Zola et al., 2010]

with statistics summarized in Table 4.4.
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Table 4.5 Total run-time in seconds for the computation of optimal parents
sets of size no more than 25 (OP1), node degree reduction (DR),
computation of remaining optimal parents sets (OP2), and cycle
removal (CYC), for the data set with n = 500 genes and m = 100
observations.

No. Cores OP1 DR OP2 CYC

16 2717 0.011 2904 25.09

32 1365 0.005 1457 16.40

64 705 0.006 740 11.00

128 377 0.010 390 11.63

256 173 0.014 184 7.02

512 87 0.030 91 6.85

1024 49 0.072 50 7.42

4.3.7.2 Scalability Analysis

In this experiment we evaluate the performance of the presented algorithms as a function

of the number of processor cores for a data set with n = 500 genes and m = 100 observations.

The run-times for the different stages of the parallel framework are shown in Table 4.5. The

same data for computing optimal parents sets before and after degree reduction is plotted

in Figure 4.4 to show relative speedup when compared to a 16-core run. These results were

generated using dlim = 25.

The results show that computing optimal parents for this test data is the most time con-

suming task. As shown in Table 4.4, of the total 415 variables with CP sets of size 1 or larger,

only 9 are of size greater or equal to 25. Nevertheless, due to the exponential complexity of

computing optimal parents, the time required to compute the remaining 9 large sets is on

average longer than the 406 smaller sets. In this test case, the time for degree reduction is

negligibly small. This is to be expected as CP pairs are created for only 9 variables, and the

resulting network is sparse. However, as node degree reduction is dominated by parallel sort,
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Figure 4.4 Relative speedup when compared to a 16-core run for the data
set with n = 500 genes and m = 100 observations, for the
computation of optimal parents sets from CP sets of size no
more than 25 (OP1) and the remaining ones (OP2).

we expect it to have good strong scaling for denser networks. Similarly, the adjacency matrix

exponentiation and cycle removal is relatively fast. This would change as a function of the

sparsity of the network. Finally, we note that the computation of optimal parents exhibits

nearly perfect scaling on up to 1024 cores.

4.3.7.3 Quality Assessment of Learned Networks

To assess the quality of the learned networks we compare the performance of our algorithm

to the exact BN structure learning algorithm using the BDe scoring function. To make this

comparison possible, we used a small synthetically generated dataset, where we controlled the

number of variables and observations, and which was possible to compute exactly. We used

SynTReN to generate a network of n = 24 variables and m = 1000 observations (same network

as shown in Figure 2.6 in Chapter 2). The heuristic algorithm produced network with total

score within 0.94% of optimal.
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4.4 Conclusions and Future Work

Large-scale Bayesian network inference is an important problem of relevance to many dis-

ciplines. In this chapter, we presented a two-phase parallel approach for computing (1) the

skeleton of a Bayesian network, that is the parents and children set of each node and for com-

puting the Markov boundary of each node, and (2) a parallel BN structure learning algorithm

that combines the heuristic approach of resolving cycles in the global network with an exact

algorithm that refines pre-computed candidate parents sets to produce the final BN network.

To the extent that the pre-computed sets of parents contain the true parents, the exact al-

gorithm on the constrained sets should produce results identical to those obtained as if the

exact algorithm is run on the whole network. We demonstrate that the resulting algorithm is

scalable and fast. We show that these computations scale well and permit inference of large

Bayesian networks using parallel computers.
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CHAPTER 5. Summary and Future Directions

In this work, we presented a set of parallel algorithms for the Bayesian network (BN) struc-

ture learning problem, and their application to inferring transcriptional networks in Arabidopsis

thaliana.

We first described a parallel algorithm for exact structure learning. This algorithm is an

efficient parallelization of a state-of-the-art dynamic programming approach, which explored

the combination of a canonical representation of directed acyclic graphs (DAGs), and the

decomposability of the scoring function. We used the canonical representation of the network

to devise a mapping of the computations to p processors, which is work optimal for 2n > p log p.

We decomposed the problem into 2n−log2 p subproblems, and devised an order in which these

can be efficiently pipelined. Our algorithm is communication efficient and uses space within

1.41 of the optimal. Our experimental results demonstrate that it achieves good scaling for up

to 2, 048 processors. It allowed the induction of a BN over 33 variables in only 1 hour and 14

minutes using the MDL scoring function.

Next, we extended this work to the case of bounded node in-degree, where a limit d on

the number of parents per variable is imposed. We characterized the algorithm’s run-time

behavior as a function of d, establishing the range
[
1
3n− logmn, dn2 e

)
of values for d where it

affects asymptotic run-time performance. Consequently, two plateau regions are identified for

d < 1
3n− logmn and d ≥ dn2 e, where the run-time complexity remains the same as respectively
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for d = 1 and d = n− 1.

Further, we evaluated the biological relevance of learning transcriptional networks from

large mixtures of microarray experiments. We applied our software to data from a targeted set

of experiments, as well as to a collection of all publicly available microarray experiments for 13

genes known to be involved in the Carotenoid Biosynthesis pathway of Arabidopsis thaliana.

We compared our findings to another method based on mutual information. Our evaluation

based on prior knowledge of the metabolic pathway of Carotenoid Biosynthesis suggests that

we are able to generate relevant networks.

Finally, we presented a two-phase heuristic approach to BN structure learning. In the

first phase, a set of candidate parents for each variable in the domain is precomputed using a

state-of-the-art heuristic. The key idea in this work is to transform the problem into a parallel

sorting problem, which is done efficiently on parallel computers. We were able to generate

the candidate parents for the whole-genome dataset (15, 596 genes and 3, 137 observations) of

Arabidopsis thaliana in approximately 2 hours and 40 minutes.

In the second phase, we combine heuristic framework for scaling with precision of exact

learning. With the assumption that the pre-computed set of parents contains the true parents,

we learned the optimal parents set for each variable exactly. We then proceeded to break any

existing cycles in parallel while minimizing score loss, thus maximizing the overall network

score. Our algorithm achieved nearly perfect scaling on up to 1, 024 cores and was capable

of learning networks for as many as 500 variables. When compared to the performance of an

exact BN learning algorithm on a small dataset, our method learned a network with a score

within 0.94% of the optimal score.

All of the devised algorithms were implemented in MPI and C++ and tested on various
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platforms (BlueGene/L, BlueGene/P, Sun and Cray AMD clusters).

Even though multiple methods have been developed in the last decade for gene network

reconstruction from gene expression data, the field is still in its infancy. Computational pre-

dictions made on biological data are difficult to interpret and validate. In this light, we outline

several future directions for improving the quality and biological relevance of the learned net-

works, as well as scalability to large data.

First and foremost, while BNs have the capability of learning biologically meaningful tran-

scriptional networks, gene expression data only gives a partial picture of the processes in the

cell. In order to begin to understand the regulatory effects in complex systems, different types

of data that capture epigenetic effects, such as methylation, need to be combined with tran-

scriptional data. Bayesian networks allow for integration of multiple types of data by admitting

a mixture of categorical and numerical variables. An exciting future direction is to apply the

BN model to such cross-data type sets.

Additional modeling challenges for BNs are introduced by the presence of self-loops. Dy-

namic Bayesian networks (DBNs) could overcome these challenges, as they have the ability

to model loops. However, DBNs require time-series data, which, if collected from multiple

experiments, could be very difficult to pre-process and use. Scalability to large data may also

pose a challenge.

In the case of exact learning, our experiments show that memory is the bottleneck currently

limiting the scalability of our parallel algorithm. While branch-and-bound approaches may be

able to decrease the number of computations and potential memory requirement, load balancing

and parallel efficiency are likely to pose a serious challenge. Improvements made to address

these issues have the potential to resolve the memory bottleneck and allow for large scale exact
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learning.

In the case of heuristic learning, a thorough comparison of the different approaches for pre-

computing candidate parents may lead to improvements in the quality of the inferred networks.

Further biological evaluation of the generated large-scale networks is also needed to improve

upon the ability of existing models to generate biologically relevant networks.
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